资源描述
2025年重庆市朝阳中学高一上数学期末学业质量监测试题
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的
1.设函数f (x)=x-ln x,则函数y=f (x)()
A.在区间,(1,e)内均有零点
B.在区间,(1,e)内均无零点
C.在区间内有零点,在区间(1,e)内无零点
D.区间内无零点,在区间(1,e)内有零点
2.设实数满足,函数的最小值为( )
A. B.
C. D.6
3.一个三棱锥的三视图如右图所示,则这个三棱锥的表面积为( )
A. B.
C. D.
4. =
A.- B.
C.- D.
5.已知,则
A.2 B.7
C. D.6
6.函数的定义域是
A. B.
C. D.
7.若,,则一定有()
A. B.
C. D.以上答案都不对
8.下列四组函数中,表示相同函数的一组是()
A.,
B.,
C.,
D.,
9.下列函数在其定义域内是增函数的是()
A. B.
C. D.
10.如图,三棱柱中,侧棱底面,底面三角形是正三角形,是中点,则下列叙述正确的是
A.平面
B.与是异面直线
C.
D.
二、填空题:本大题共6小题,每小题5分,共30分。
11.若“”是“”的充要条件,则实数m的取值是_________
12.正方体ABCD-A1B1C1D1中,二面角C1-AB-C平面角等于________
13.已知一个扇形的面积为,半径为,则它的圆心角为______弧度
14.已知函数,则满足的实数的取值范围是__
15.已知函数,若关于的方程在上有个不相等的实数根,则实数的取值范围是___________.
16.已知,,,则有最大值为__________
三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。
17.已知函数为的零点,为图象的对称轴
(1)若在内有且仅有6个零点,求;
(2)若在上单调,求的最大值
18.已知向量,满足,,且,的夹角为.
(1)求;
(2)若,求的值.
19.设函数的定义域为,函数的定义域为
(1)求;
(2)若,求实数的取值范围
20.已知函数
(1)求的定义域;
(2)判断的奇偶性并予以证明;
(3)求不等式的解集
21.已知函数
(1)当时,函数恒有意义,求实数的取值范围;
(2)是否存在这样的实数,使得函数在区间上为减函数,并且最大值为1?如果存在,试求出的值;如果不存在,请说明理由
参考答案
一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的
1、D
【解析】求出导函数,由导函数的正负确定函数的单调性,再由零点存在定理得零点所在区间
【详解】当x∈时,函数图象连续不断,且f ′(x)=-=<0,所以函数f (x)在上单调递减
又=+1>0,f (1)=>0,f (e)=e-1<0,所以函数f (x)有唯一的零点在区间(1,e)内
故选:D
2、A
【解析】将函数变形为,再根据基本不等式求解即可得答案.
详解】解:由题意,所以,
所以
,
当且仅当,即时等号成立,
所以函数的最小值为.
故选:A
【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:
(1)“一正二定三相等”“一正”就是各项必须为正数;
(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;
(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方
3、B
【解析】
由三视图可画出该三棱锥的直观图,如图 ,图中正四棱柱的底面边长为 ,高为 ,棱锥的四个面有三个为直角三角形,一个为腰长为 ,底长 的等腰三角形,其面积分别为: ,所以三棱锥的表面积为,故选B.
4、A
【解析】.
考点:诱导公式
5、A
【解析】先由函数解析式求出,从而,由此能求出结果
【详解】,
,
,故选A
【点睛】本题主要考查分段函数的解析式、分段函数解不等式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.当出现的形式时,应从内到外依次求值
6、B
【解析】根据根式、对数及分母有意义的原则,即可求得x的取值范围
【详解】要使函数有意义,
则需,解得,
据此可得:函数的定义域为.
故选B.
【点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.本题求解时要注意根号在分母上,所以需要,而不是.
7、D
【解析】对于ABC,举例判断,
【详解】对于AB,若,则,所以AB错误,
对于C,若,则,所以C错误,
故选:D
8、C
【解析】根据相同函数的判断原则进行定义域的判断即可选出答案.
【详解】解:由题意得:
对于选项A:的定义域为,的定义域为,所以这两个函数的定义域不同,不表示相同的函数,故A错误;
对于选项B:的定义域为,的定义域为,所以这两个函数的定义域不同,不表示相同的函数,故B错误;
对于选项C:的定义域为,的定义域为,这两函数的定义域相同,且对应关系也相同,所以表示相同的函数,故C正确;
对于选项D:的定义域为,的定义域为或,所以这两个函数的定义域不同,不表示相同的函数,故D错误.
故选:C
9、A
【解析】函数在定义域内单调递减,排除B,单调区间不能用并集连接,排除CD.
【详解】定义域为R,且在定义域上单调递增,满足题意,A正确;
定义域为,在定义域内是减函数,B错误;
定义域为,而在为单调递增函数,不能用并集连接,C错误;
同理可知:定义域为,而在区间上单调递增,不能用并集连接,D错误.
故选:A
10、D
【解析】因为三棱柱A1B1C1-ABC中,侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,
所以对于A,AC与AB夹角为60°,即两直线不垂直,所以AC不可能垂直于平面ABB1A1;故A错误;
对于B,CC1与B1E都在平面CC1BB1中不平行,故相交;所以B错误;
对于C,A1C1,B1E是异面直线;故C错误;
对于D,因为几何体是三棱柱,并且侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,所以BB1⊥底面ABC,所以BB1⊥AE,AE⊥BC,得到AE⊥平面BCC1B1,所以AE⊥BB1;
故选D.
二、填空题:本大题共6小题,每小题5分,共30分。
11、0
【解析】根据充要条件的定义即可求解.
【详解】,
则{x|}={x|},
即.
故答案为:0.
12、45°
【解析】
解:如图,设正方体ABCD-A1B1C1D1的棱长为1,以DA为x轴,以DC为y轴,以DD1为z轴,建立空间直角坐标系,则A(1,0,0),B(1,1,0),C1(0,1,1),∴=(0,1,0),=(-1,1,1),设面ABC1的法向量为=(x,y,z),∵•=0,•=0,∴y=0,-x+y+z=0,∴=(1,0,1),∵面ABC的法向量=(0,0,1),设二面角C1-AB-C的平面角为θ,∴cosθ=|cos<,>|=,∴θ=45°,答案为45°
考点:二面角的平面角
点评:本题考查二面角的平面角及求法,是基础题.解题时要认真审题,注意向量法的合理运用
13、##
【解析】利用扇形的面积公式列方程即可求解.
【详解】设扇形的圆心角为,
扇形的面积即,解得,
所以扇形的圆心角为弧度,
故答案为:.
14、
【解析】分别对,分别大于1,等于1,小于1的讨论,即可.
【详解】对,分别大于1,等于1,小于1讨论,当,解得
当,不存在,当时,,解得,故
x的范围为
【点睛】本道题考查了分段函数问题,分类讨论,即可,难度中等
15、
【解析】数形结合,由条件得在上有个不相等的实数根,结合图象分析根的个数列不等式求解即可.
【详解】作出函数图象如图所示:
由,得,
所以,且,
若,即在上有个不相等的实数根,
则 或,
解得.
故答案为:
【点睛】方法点睛:判定函数的零点个数的常用方法:
(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;
(2)数形结合法:先令,将函数的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果.
16、4
【解析】分析:直接利用基本不等式求xy的最大值.
详解:因为x+y=4,所以4≥,所以故答案为4.
点睛:(1)本题主要考查基本不等式,意在考查学生对该基础知识的掌握水平.(2)利用基本不等式 求最值时,一定要注意“一正二定三相等”,三者缺一不可.
三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。
17、(1);(2).
【解析】(1)根据的零点和对称中心确定出的取值情况,再根据在上的零点个数确定出,由此确定出的取值,结合求解出的取值,再根据以及的范围确定出的取值,由此求解出的解析式;
(2)先根据在上单调确定出的范围,由此确定出的可取值,再对从大到小进行分析,由此确定出的最大值.
【详解】(1)因为是的零点,为图象的对称轴,
所以,所以,
因为在内有且仅有个零点,
分析正弦函数函数图象可知:个零点对应的最短区间长度为,最长的区间长度小于,
所以,所以,
所以,所以,所以,所以,
所以,代入,所以,
所以,所以,
又因为,所以,
所以;
(2)因为在上单调,所以,即,所以,
又由(1)可知,所以,
所以,
当时,,所以,
所以,所以此时,
因为,所以,
又因为在时显然不单调
所以在上不单调,不符合;
当时,,所以,
所以,所以此时,
因为,所以,
又因为在时显然单调递减,
所以在上单调递减,符合;
综上可知,的最大值为.
【点睛】思路点睛:求解动态的三角函数涉及的取值范围问题的常见突破点:
(1)结论突破:任意对称轴(对称中心)之间的距离为,任意对称轴与对称中心之间的距离为;
(2)运算突破:已知在区间内单调,则有且;
已知在区间内没有零点,则有且.
18、(1)-12;(2)12.
【解析】(1)按照向量的点积公式得到,再由向量运算的分配律得到结果;(2)根据向量垂直得到,按照运算公式展开得到结果即可.
【详解】(1)由题意得,
∴
(2)∵,∴,∴,
∴,∴
【点睛】这个题目考查了向量的点积运算,以及向量垂直的转化;向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题.
19、(1);
(2).
【解析】(1)由题知,即得;
(2)根据,得,即求.
【小问1详解】
由题知,
解得:,
∴.
【小问2详解】
由题知,若,
则,,
实数的取值范围是.
20、(1);(2)奇函数;证明见解析;(3)
【解析】(1)利用对数的性质可得,解不等式即可得函数的定义域.
(2)根据奇偶性的定义证明的奇偶性即可.
(3)由的解析式判断单调性,利用对数函数的单调性解不等式即可.
【详解】(1)要使有意义,则,解得:
∴的定义域为.
(2)为奇函数,证明如下:
由(1)知: 且,
∴为奇函数,得证
(3)∵在内是增函数,由,
∴,解得,
∴不等式的解集是.
21、(1);(2)不存在,理由见解析
【解析】(1)结合题意得到关于实数的不等式组,求解不等式,即可求解,得到答案;
(2)由题意结合对数函数的图象与性质,即可求得是否存在满足题意的实数的值,得到答案
【详解】(1)由题设,对一切恒成立,且,
∵,∴在上减函数,
从而,∴,
∴的取值范围为;
(2)假设存在这样的实数,由题设知,
即,∴,
此时,
当时,,此时没有意义,故这样的实数不存在
【点睛】关键点点睛:本题主要考查了对数函数的图象与性质的应用,以及复数函数的单调性的判定及应用,其中解答中熟记对数函数的图象与性质,合理求解函数的最值,列出方程求解是解答的关键
展开阅读全文