收藏 分销(赏)

北京市西城区北师大附中2025年数学高一第一学期期末学业质量监测试题含解析.doc

上传人:zj****8 文档编号:12794178 上传时间:2025-12-08 格式:DOC 页数:15 大小:1.20MB 下载积分:12.58 金币
下载 相关 举报
北京市西城区北师大附中2025年数学高一第一学期期末学业质量监测试题含解析.doc_第1页
第1页 / 共15页
北京市西城区北师大附中2025年数学高一第一学期期末学业质量监测试题含解析.doc_第2页
第2页 / 共15页


点击查看更多>>
资源描述
北京市西城区北师大附中2025年数学高一第一学期期末学业质量监测试题 考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。 2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。 3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.设函数,点,,在的图像上,且.对于,下列说法正确的是() ①一定是钝角三角形②可能是直角三角形③不可能是等腰三角形③可能是等腰三角形 A①③ B.①④ C.②③ D.②④ 2.心理学家有时用函数测定在时间t(单位:min)内能够记忆的量L,其中A表示需要记忆的量,k表示记忆率.假设一个学生需要记忆的量为200个单词,此时L表示在时间t内该生能够记忆的单词个数.已知该生在5min内能够记忆20个单词,则k的值约为(,) A.0.021 B.0.221 C.0.461 D.0.661 3.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是(  ) A.108cm3 B.100cm3 C.92cm3 D.84cm3 4.函数的部分图象大致为( ) A. B. C. D. 5.若命题:,则命题的否定为() A. B. C. D. 6.已知关于的方程在区间上存在两个不同的实数根,则实数的取值范围是(  ) A. B. C. D. 7.下列四个函数中,与函数相等的是 A. B. C. D. 8.已知=(4,5),=(-3,4),则-4的坐标是( ) A (16,11) B.(-16,-11) C.(-16,11) D.(16,-11) 9.已知关于的方程的两个实根为满足则实数的取值范围为 A. B. C. D. 10.设m、n是两条不同的直线,、是两个不同的平面,有下列四个命题: 如果,,那么; 如果,,那么; 如果,,,那么; 如果,,,那么 其中错误的命题是   A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.如图,在长方体ABCD—中,AB=3cm,AD=2cm,,则三棱锥的体积___________. 12.设,若存在使得关于x的方程恰有六个解,则b的取值范围是______ 13.若关于的不等式的解集为,则实数__________ 14.的单调增区间为________. 15.已知,g(x)=x+t,设,若当x为正整数时,恒有h(5)≤h(x),则实数t的取值范围是_____________. 16.已知函数,又有定义在R上函数满足:(1), ,均恒成立; (2)当时,,则_____, 函数在区间中的所有零点之和为_______. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.设两个向量,,满足,. (1)若,求、的夹角; (2)若、夹角为,向量与夹角为钝角,求实数的取值范围. 18.旅游社为某旅游团包飞机去旅游,其中旅行社的包机费为15 000元.旅游团中每人的飞机票按以下方式与旅行社结算:若旅游团人数在30人或30人以下,飞机票每张收费900元;若旅游团人数多于30人,则给予优惠,每多1人,机票费每张减少10元,但旅游团人数最多为75人 (1)写出飞机票的价格关于旅游团人数的函数; (2)旅游团人数为多少时,旅行社可获得最大利润? 19.已知函数是奇函数 (1)求实数a的值; (2)当时, ①判断的单调性(不要求证明); ②对任意实数x,不等式恒成立,求正整数m的最小值 20.已知直线经过直线与的交点. (1)点到直线的距离为3,求直线的方程; (2)求点到直线的距离的最大值,并求距离最大时的直线的方程 21.计算下列各式: (1)(式中字母均为正数); (2). 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、A 【解析】结合,得到,所以一定为钝角三角形,可判定①正确,②错误;根据两点间的距离公式和函数的变化率的不同,得到,可判定③正确,④不正确. 【详解】由题意,函数为单调递增函数, 因为点,,在的图像上,且, 不妨设, 可得, 则, 因为,可得, 又由因为,,,, 所以, 所以 所以,所以一定为钝角三角形,所以①正确,②错误; 由两点间的距离公式,可得, 根据指数函数和一次函数的变化率,可得点到的变化率小于点到点的变化率不相同,所以,所以不可能为等腰三角形,所以③正确,④不正确. 故选:A. 2、A 【解析】由题意得出,再取对数得出k的值. 【详解】由题意可知,所以,解得 故选:A 3、B 【解析】由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).据此即可得出体积 解:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角) ∴该几何体的体积V=6×6×3﹣=100 故选B 考点:由三视图求面积、体积 4、A 【解析】由奇偶性定义判断对称性,再根据解析式判断、上的符号,即可确定大致图象. 【详解】由题设,且定义域为R,即为奇函数,排除C,D; 当时恒成立; ,故当时,当时; 所以,时,时,排除B; 故选:A. 5、D 【解析】根据存在量词的否定是全称量词可得结果. 【详解】根据存在量词的否定是全称量词可得命题的否定为. 故选:D 6、C 【解析】本题首先可根据方程存在两个不同的实数根得出、,然后设,分为、两种情况进行讨论,最后根据对称轴的相关性质以及的大小即可得出结果. 【详解】因为方程存在两个不同的实数根, 所以,,解得或, 设,对称轴为, 当时, 因为两个不同实数根在区间上, 所以,即,解得, 当时, 因为两个不同的实数根在区间上, 所以,即,解得, 综上所述,实数的取值范围是, 故选:C. 7、D 【解析】分别化简每个选项的解析式并求出定义域,再判断是否与相等. 【详解】A选项:解析式为,定义域为R,解析式不相同; B选项:解析式为,定义域为,定义域不相同; C选项:解析式为,定义域为,定义域不相同; D选项:解析式为,定义域为R,符合条件,答案为D. 【点睛】函数相等主要看:(1)解析式相同;(2)定义域相同.属于基础题. 8、D 【解析】直接利用向量的坐标运算求解. 【详解】-4. 故选:D 9、D 【解析】利用二次方程实根分布列式可解得. 【详解】设, 根据二次方程实根分布可列式:,即, 即,解得:. 故选D. 【点睛】本题考查了二次方程实根的分布.属基础题. 10、B 【解析】根据空间直线与直线,直线与平面的位置关系及几何特征,逐一分析四个命题的真假,可得 答案 【详解】①如果α∥β,m⊂α,那么m∥β,故正确; ②如果m⊥α,β⊥α,那么m∥β,或m⊂β,故错误; ③如果m⊥n,m⊥α,n∥β,那么α,β关系不能确定,故错误; ④如果m∥β,m⊂α,α∩β=n,那么m∥n,故正确 故答案为B 【点睛】本题以命题的真假判断与应用为载体考查了空间直线与直线,直线与平面的位置关系及几何 特征等知识点 二、填空题:本大题共6小题,每小题5分,共30分。 11、1 【解析】根据题意,求得棱锥的底面积和高,由体积公式即可求得结果. 【详解】根据题意可得,平面, 故可得, 又因为, 故可得. 故答案为:. 【点睛】本题考查三棱锥体积的求解,涉及转换棱锥的顶点,属基础题. 12、 【解析】作出f(x)的图像,当时,,当时,.令,则,则该关于t的方程有两个解、,设<,则,.令,则,据此求出a的范围,从而求出b的范围 【详解】当时,, 当时,, 当时,, 则f(x)图像如图所示: 当时,,当时, 令,则, ∵关于x的方程恰有六个解, ∴关于t的方程有两个解、,设<, 则,, 令,则, ∴且, 要存a满足条件,则,解得 故答案为: 13、 【解析】先由不等式的解得到对应方程的根,再利用韦达定理,结合解得参数a即可. 【详解】关于的不等式的解集为, 则方程的两根为,则, 则由,得,即, 故. 故答案为:. 14、 【解析】求出给定函数的定义域,由对数函数、正弦函数单调性结合复合函数单调性求解作答. 【详解】依题意,,则,解得, 函数中,由得, 即函数在上单调递增, 当时,函数在上单调递增, 又函数在上单调递增, 所以函数的单调增区间为. 故答案为: 【点睛】关键点睛:函数的单调区间是定义域的子区间,求函数的单调区间,正确求出函数的定义域是解决问题的关键. 15、 [-5,-3] 【解析】作出的图象,如图, 设与的交点横坐标为, 则在时,总有, 所以当时,有,, 由,得; 当当时,有,, 由,得, 综上,, 故答案为:. 16、 ①.1 ②.42 【解析】求出的周期和对称轴,再结合图象即可. 【详解】由条件可知函数的图象关于对称轴对称, 由可知,,则周期, 即, 函数在区间中的所有零点之和即为函数与函数 图象的交点的横坐标之和, 当时,为单调递增函数,, ,且区间关于对称, 又∵由已知得也是的对称轴,∴只需用研究直线左侧部分即可, 由图象可知左侧有7个交点,则右侧也有7个交点,将这14个交点的横坐标从小到大排列,第个数记为,由对称性可知,则, 同理,…,, ∴. 故答案为:,. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1);(2)且. 【解析】(1)根据数量积运算以及结果,结合模长,即可求得,再根据数量积求得夹角; (2)根据夹角为钝角则数量积为负数,求得的范围;再排除向量与不为反向向量对应参数的范围,则问题得解. 【详解】(1)因,所以, 即,又,,所以, 所以,又, 所以向量、的夹角是. (2)因为向量与的夹角为钝角,所以, 且向量与不反向共线, 即, 又、夹角为,所以, 所以,解得, 又向量与不反向共线, 所以,解得, 所以的取值范围是且. 【点睛】本题考查利用数量积求向量夹角,以及由夹角范围求参数范围,属综合基础题. 18、(1). (2) 旅游团人数为60时,旅行社可获得最大利润 【解析】(1)根据自变量 的取值范围,分0或,确定每张飞机票价的函数关系式; (Ⅱ)利用所有人的费用减去包机费就是旅行社可获得的利润,结合自变量的取值范围,可得利润函数,结合自变量的取值范围,分段求出最大利润,从而解决问题 【详解】(1)设旅游团人数为人,飞行票价格为元,依题意,当,且时,,当,且时,y=900-10(x-30)=-10x+1 200. 所以所求函数为 y= (2)设利润为元,则 当,且时, (元), 当,且时,元,因为21 000元>12 000元, 所以旅游团人数为60时,旅行社可获得最大利润 【点睛】此题考查了分段函数以及实际问题中的最优化问题,培养学生对实际问题分析解答能力,属于中档题 19、(1)或 (2)①在上单调递增②3 【解析】(1)依题意可得,即可得到方程,解得即可; (2)①根据复合函数的单调性判断可得; ②根据函数的单调性与奇偶性可得在上恒成立,由,即可得到不等式,解得的取值范围,即可得解; 【小问1详解】 解:因为函数是一个奇函数, 所以,即, 可得,即, 则,得或.此时定义域为R,满足题意. 【小问2详解】 ①因为,所以.函数,定义域为, 因为与在定义域上单调递增,所以在上单调递增 ②对任意实数x,恒成立,, 由①知函数在上单调递增, 可得在上恒成立 因为, 所以,即 于是正整数m的最小值为3 20、 (1) x=2或4x-3y-5=0(2)见解析 【解析】(1)设过两直线的交点的直线系方程,再根据点到直线的距离公式,求出的值,得出直线的方程;(2)先求出交点P的坐标,由几何的方法求出距离的最大值 【详解】(1)因为经过两已知直线交点直线系方程为 (2x+y-5)+λ(x-2y)=0,即(2+λ)x+(1-2λ)y-5=0, 点到直线的距离为3, 所以=3, 解得λ=或λ=2, 所以直线l的方程为x=2或4x-3y-5=0. (2)由解得交点P(2,1), 如图,过P作任一直线l,设d为点A到直线l的距离, 则d≤|PA|(当l⊥PA时等号成立) 所以dmax=|PA|= 此时直线l的方程为: 3x-y-5=0 21、(1); (2). 【解析】(1)根据给定条件利用指数运算法则化简作答. (2)根据给定条件,利用对数换底公式及对数运算性质计算作答. 【小问1详解】 依题意,. 【小问2详解】 .
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服