收藏 分销(赏)

上海市宝山区通河中学2026届数学高一第一学期期末检测模拟试题含解析.doc

上传人:zj****8 文档编号:12793743 上传时间:2025-12-08 格式:DOC 页数:13 大小:604KB 下载积分:12.58 金币
下载 相关 举报
上海市宝山区通河中学2026届数学高一第一学期期末检测模拟试题含解析.doc_第1页
第1页 / 共13页
上海市宝山区通河中学2026届数学高一第一学期期末检测模拟试题含解析.doc_第2页
第2页 / 共13页


点击查看更多>>
资源描述
上海市宝山区通河中学2026届数学高一第一学期期末检测模拟试题 考生请注意: 1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。 2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。 3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.下列四组函数中,表示同一个函数的一组是( ) A., B., C., D., 2.已知扇形的周长为15cm,圆心角为3rad,则此扇形的弧长为() A.3cm B.6cm C.9cm D.12cm 3.若,,则角的终边在 A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.已知向量,则锐角等于 A.30° B.45° C.60° D.75° 5.函数f(x)=2x-5零点在下列哪个区间内(). A.(0,1) B.(1,2) C.(2,3) D.(3,4) 6.函数的单调递增区间为() A., B., C., D., 7.如图,正方体中, ①与平行; ②与垂直; ③与垂直 以上三个命题中,正确命题的序号是( ) A.①② B.②③ C.③ D.①②③ 8.△ABC的内角、、的对边分别为、、,若,,,则() A. B. C. D. 9.若函数,在区间上单调递增,在区间上单调递减,则() A.1 B. C.2 D.3 10.下列命题中正确的是( ) A.若,则 B.若,则 C.若,则 D.若,则 二、填空题:本大题共6小题,每小题5分,共30分。 11.函数的定义域是______ 12.已知角的终边经过点,则________. 13.在内,使成立的x的取值范围是____________ 14.已知函数=___________ 15.函数单调递增区间为_____________ 16.已知函数图像关于对称,当时,恒成立,则满足的取值范围是_____________ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知函数是定义在上的奇函数,且. (1)求函数解析式; (2)判断函数在上的单调性,并用定义证明; (3)解关于的不等式:. 18.在中,已知为线段的中点,顶点,的坐标分别为,. (Ⅰ)求线段的垂直平分线方程; (Ⅱ)若顶点的坐标为,求垂心的坐标. 19.已知二次函数区间[0,3]上有最大值4,最小值0 (1)求函数的解析式; (2)设.若在时恒成立,求k的取值范围 20.—条光线从点发出,经轴反射后,经过点,求入射光线和反射光线所在的直线方程. 21.已知 (1)求; (2)若,求. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、B 【解析】根据相等函数的判定方法,逐项判断,即可得出结果. 【详解】A选项,因为的定义域为,的定义域为,定义域不同,不是同一函数,故A错; B选项,因为的定义域为,的定义域也为,且与对应关系一致,是同一函数,故B正确; C选项,因为的定义域为,的定义域为,定义域不同,不是同一函数,故C错; D选项, 因为的定义域为,的定义域为,定义域不同,不是同一函数,故D错. 故选:B. 2、C 【解析】利用扇形弧长公式进行求解. 【详解】设扇形弧长为l cm,半径为r cm,则,即且,解得:(cm),故此扇形的弧长为9cm. 故选:C 3、D 【解析】本题考查三角函数的性质 由知角可能在第一、四象限;由知角可能在第三、四象限; 综上得角的终边在箱四象限 故正确答案为 4、B 【解析】因为向量共线,则有,得,锐角等于45°,选B 5、C 【解析】利用零点存在定理进行求解. 【详解】因为单调递增,且; 因为,所以区间内必有一个零点; 故选:C. 【点睛】本题主要考查零点所在区间的判断,判断的依据是零点存在定理,侧重考查数学运算的核心素养. 6、C 【解析】利用正切函数的性质求解. 【详解】解:令, 解得, 所以函数的单调递增区间为,, 故选:C 7、C 【解析】根据线面平行、线面垂直的判定与性质,即可得到正确答案 【详解】解:对于①,在正方体中,由图可知与异面,故①不正确 对于②,因为,不垂直,所以与不垂直,故②不正确 对于③,在正方体中,平面,又∵平面,∴与垂直.故③正确 故选:C 【点睛】此题考查线线平行、线线垂直,考查学生的空间想象能力和对线面平行、线面垂直的判定与性质的理解与掌握,属基础题 8、C 【解析】由已知利用余弦定理可求的值,利用等腰三角形的性质可求的值. 【详解】解:∵,,, ∴由余弦定理可得, 求得:c=1. ∴ ∴. 故选:C. 【点睛】本题主要考查了余弦定理在解三角形中应用,属于基础题. 9、B 【解析】根据以及周期性求得. 【详解】依题意函数,在区间上单调递增,在区间上单调递减, 则, 即,解得. 故选:B 10、C 【解析】 分析】 利用不等式性质逐一判断即可. 【详解】选项A中,若,,则,若,,则,故错误; 选项B中,取 ,满足,但,故错误; 选项C中,若,则两边平方即得,故正确; 选项D中,取,满足,但,故错误. 故选:C. 【点睛】本题考查了利用不等式性质判断大小,属于基础题. 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】 ,即定义域为 点睛:常见基本初等函数定义域的基本要求 (1)分式函数中分母不等于零 (2)偶次根式函数的被开方式大于或等于0. (3)一次函数、二次函数的定义域均为R. (4)y=x0的定义域是{x|x≠0} (5)y=ax(a>0且a≠1),y=sin x,y=cos x的定义域均为R. (6)y=logax(a>0且a≠1)的定义域为(0,+∞) 12、 【解析】根据终边上的点,结合即可求函数值. 【详解】由题意知:角在第一象限,且终边过, ∴. 故答案为:. 13、 【解析】根据题意在同一个坐标系中画出在内的函数图像,由图求出不等式的解集 【详解】解:在同一个坐标系中画出在内的函数图像,如图所示, 则使成立的x的取值范围是, 故答案为: 14、2 【解析】, 所以 点睛:本题考查函数对称性的应用.由题目问题可以猜想为定值,所以只需代入计算,得.函数对称性的问题要大胆猜想,小心求证 15、 【解析】先求出函数的定义域,再利用求复合函数单调区间的方法求解即得. 【详解】依题意,由得:或,即函数的定义域是, 函数在上单调递减,在上单调递增,而在上单调递增, 于是得在是单调递减,在上单调递增, 所以函数的单调递增区间为. 故答案为: 16、 【解析】由函数图像关于对称,可得函数是偶函数,由当时,恒成立,可得函数在上为增函数,从而将转化为,进而可求出取值范围 【详解】因为函数图像关于对称, 所以函数是偶函数, 所以可转化为 因为当时,恒成立, 所以函数在上为增函数, 所以,解得, 所以取值范围为, 故答案为: 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1); (2)函数在上是增函数,证明见解析; (3). 【解析】(1)根据奇函数的定义可求得的值,再结合已知条件可求得实数的值,由此可得出函数的解析式; (2)判断出函数在上是增函数,任取、且,作差,因式分解后判断的符号,即可证得结论成立; (3)由得,根据函数的单调性与定义域可得出关于实数的不等式组,由此可解得实数的取值范围. 【小问1详解】 解:因为函数是定义在上的奇函数,则, 即,可得,则, 所以,,则,因此,. 【小问2详解】 证明:函数在上是增函数,证明如下: 任取、且,则 , 因为,则,,故,即. 因此,函数在上是增函数. 【小问3详解】 解:因为函数是上的奇函数且为增函数, 由得, 由已知可得,解得. 因此,不等式的解集为. 18、 (Ⅰ);(Ⅱ). 【解析】(1)根据中点坐标公式求中点坐标,根据斜率公式求斜率,最后根据点斜式求方程(2)根据垂心为高线的交点,先根据点斜式求两条高线方程,再解方程组求交点坐标,即得垂心的坐标. 试题解析:(Ⅰ)∵的中点是,直线的斜率是-3,线段中垂线的斜率是,故线段的垂直平分线方程是,即; (Ⅱ)∵,∴边上的高所在线斜率∵ ∴边上高所在直线的方程:,即 同理∴边上的高所在直线的方程: 联立和,得:,∴的垂心为 19、(1);(2). 【解析】(1)根据二次函数的性质讨论对称轴,即可求解最值,可得解析式 (2)求解的解析式,令,则,问题转化为当u∈[,8]时,恒成立,分离参数即可求解 【详解】(1)其对称轴x=1,x∈[0,3]上, ∴当x=1时,取得最小值为﹣m+n+1=0① 当x=3时,取得最大值为3m+n+1=4② 由①②解得:m=1,n=0, 故得函数的解析式为:; (2)由,令,,则, 问题转化为当u∈[,8]时,恒成立,即u2﹣4u+1﹣ku2≤0恒成立, ∴k 设,则t∈[,8],得:1﹣4t+t2=(t﹣2)2﹣3≤k 当t=8时,(1﹣4t+t2)max=33, 故得k的取值范围是[33,+∞). 20、入射光线所在直线方程为2x-y-4=0, 反射光线所在直线方程为2x+y-4=0 【解析】如图所示,作A点关于x轴的对称点A′,显然,A′坐标为(3,-2),连接A′B,则A′B所在直线即为反射光线 由两点式可得直线A′B的方程为,即2x+y-4=0. 同理,点B关于x轴的对称点为B′(-1,-6), 由两点式可得直线AB′的方程为,即2x-y-4=0, ∴入射光线所在直线方程为2x-y-4=0, 反射光线所在直线方程为2x+y-4=0. 考点:两点式直线方程,对称问题. 21、(1) (2) 【解析】(1) 利用诱导公式可得答案; (2)利用诱导公式得到,再根据的范围和平方关系可得答案. 小问1详解】 . 【小问2详解】 , 若,则, 所以.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服