资源描述
2026届福建省东山第二中学数学高一上期末考试模拟试题
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的
1.函数 的最大值与最小值分别为( )
A.3,-1 B.3,-2
C.2,-1 D.2,-2
2.如图,直线与单位圆相切于点,射线从出发,绕着点逆时针旋转,在旋转的过程中,记(),所经过的单位圆内区域(阴影部分)的面积为,记,则下列选项判断正确的是
A.当时,
B.对任意,且,都有
C.对任意,都有
D.对任意,都有
3.玉雕在我国历史悠久,拥有深厚的文化底蕴,数千年来始终以其独特的内涵与魅力深深吸引着世人.玉雕壁画是采用传统的手工雕刻工艺,加工生产成的玉雕工艺画.某扇形玉雕壁画尺寸(单位:)如图所示,则该壁画的扇面面积约为()
A. B.
C. D.
4.若,,则的值为
A. B.
C. D.
5.符号函数是一个很有用的函数,符号函数能够把函数的符号析离出来,其表达式为若定义在上的奇函数,当时,,则的图象是()
A. B.
C. D.
6.如图,在平面四边形中,,,,将其沿对角线折成四面体,使平面平面,若四面体顶点在同一球面上,则该球的表面积为( )
A. B.
C. D.
7.在空间直角坐标系中,点关于平面的对称点是
A. B.
C. D.
8.已知函数恰有2个零点,则实数a取值范围是( )
A. B.
C. D.
9.幂函数的图象关于轴对称,且在上是增函数,则的值为()
A. B.
C. D.和
10.复利是一种计算利息的方法.即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱1000元,存入银行,年利率为2.25%;若放入微信零钱通或
者支付宝的余额宝,年利率可达4.01%.如果将这1000元选择合适方式存满5年,可以多获利息( )元.(参考数据:)
A.176 B.100
C.77 D.88
二、填空题:本大题共6小题,每小题5分,共30分。
11.已知函数 若函数有三个不同的零点,且,则的取值范围是____
12.若则______
13.已知函数,若关于方程恰好有6个不相等的实数解,则实数的取值范围为__________.
14.已知长方体的8个顶点都在球的球面上,若,,,则球的表面积为___________.
15.函数的值域为_____________
16.如图,扇环ABCD中,弧,弧,,则扇环ABCD的面积__________
三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。
17.已知函数
(Ⅰ)求的最小正周期及对称轴方程;
(Ⅱ)当时,求函数的最大值、最小值,并分别求出使该函数取得最大值、最小值时的自变量的值.
18.已知函数
(1)求函数的定义域,并判断函数的奇偶性;
(2)对于,不等式恒成立,求实数的取值范围
19.近来,国内多个城市纷纷加码布局“夜经济”,以满足不同层次的多元消费,并拉动就业、带动创业,进而提升区域经济发展活力.某夜市的一位工艺品售卖者,通过对每天销售情况的调查发现:该工艺品在过去的一个月内(以30天计),每件的销售价格(单位:元)与时间x(单位:天)的函数关系近似满足,日销售量(单位:件)与时间x(单位:天)的部分数据如下表所示:
x
10
15
20
25
30
50
55
60
55
50
(1)给出以下四个函数模型:
①;②;③;④
请你根据上表中的数据,从中选择你认为最合适的一种函数模型来描述日销售量与时间x的变化关系,并求出该函数的解析式;
(2)设该工艺品的日销售收入为(单位:元),求的最小值
20.已知不等式的解集为A,不等式的解集为B.
(1)求A∩B;
(2)若不等式的解集为A∩B,求的值
21.已知(其中a为常数,且)是偶函数.
(1)求实数m的值;
(2)证明方程有且仅有一个实数根,若这个唯一的实数根为,试比较与的大小.
参考答案
一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的
1、D
【解析】分析:将化为,令,可得关于t的二次函数,根据t的取值范围,求二次函数的最值即可.
详解:利用同角三角函数关系化简,
设,则,
根据二次函数性质当时,y取最大值2,当时,y取最小值.
故选D.
点睛:本题考查三角函数有关的最值问题,此类问题一般分为两类,一种是解析式化为的形式,用换元法求解;
另一种是将解析式化为的形式,根据角的范围求解.
2、C
【解析】对于,当,故错误;对于,由题可知对于任意,为增函数,所以与的正负相同,则,故错误;对于,由,得对于任意,都有;对于,当时,,故错误.
故选C
D对任意,都有
3、D
【解析】利用扇形的面积公式,利用大扇形面积减去小扇形面积即可.
【详解】如图,设,,由弧长公式可得解得,,设扇形,扇形的面积分别为,则该壁画的扇面面积约为
.
故选:.
4、A
【解析】由两角差的正切公式展开计算可得
【详解】解:,,则,
故选A
【点睛】本题考查两角差的正切公式:,对应还应该掌握两角和的正切公式,及正弦余弦公式.本题是基础
5、C
【解析】根据函数的奇偶性画出的图象,结合的知识确定正确答案.
【详解】依题意,是定义在上的奇函数,图象关于原点对称.
当时,,
结合的奇偶性,作出的大致图象如下图所示,
根据的定义可知,选项C符合题意.
故选:C
6、B
【解析】由题意,的中点就是球心,求出球的半径,即可得到球的表面积
【详解】解:由题意,四面体顶点在同一个球面上,和都是直角三角形,
所以的中点就是球心,所以,球的半径为:,
所以球的表面积为:
故选B
【点睛】本题是基础题,考查四面体的外接球的表面积的求法,找出外接球的球心,是解题的关键,考查计算能力,空间想象能力
7、C
【解析】关于平面对称的点坐标相反,另两个坐标相同,因此结论为
8、D
【解析】由在区间上单调递减,分类讨论,,三种情况,根据零点个数求出实数a的取值范围.
【详解】函数在区间上单调递减,且方程的两根为.
若时,由解得或,满足题意.
若时,,,当时,,即函数在区间上只有一个零点,因为函数恰有2个零点,所以且.
当时,,,此时函数有两个零点,满足题意.
综上,
故选:D
9、D
【解析】分别代入的值,由幂函数性质判断函数增减性即可.
【详解】因为,,
所以当时,,由幂函数性质得,在上是减函数;
所以当时,,由幂函数性质得,在上是常函数;
所以当时,,由幂函数性质得,图象关于 y 轴对称,在上是增函数;
所以当时,,由幂函数性质得,图象关于 y 轴对称,在上是增函数;
故选:D
10、B
【解析】由题意,某同学有压岁钱1000元,分别计算存入银行和放入微信零钱通或者支付宝的余额宝所得利息,即可得到答案
【详解】由题意,某同学有压岁钱1000元,存入银行,年利率为2.25%,若在银行存放5年,可得金额为元,即利息为元,若放入微信零钱通或者支付宝的余额宝时,利率可达4.01%,若存放5年,可得金额为元,即利息为元,所以将这1000元选择合适方式存满5年,可以多获利息元,故选B
【点睛】本题主要考查了等比数列的实际应用问题,其中解答中认真审题,准确理解题意,合理利用等比数列的通项公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题
二、填空题:本大题共6小题,每小题5分,共30分。
11、;
【解析】作图可知:
点睛:利用函数零点情况求参数值或取值范围的方法
(1)利用零点存在的判定定理构建不等式求解.
(2)分离参数后转化为函数的值域(最值)问题求解.
(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.
12、
【解析】
13、
【解析】作出函数的简图,换元,结合函数图象可知原方程有6根可化为在区间上有两个不等的实根,列出不等式组求解即可.
【详解】当,结合“双勾”函数性质可画出函数的简图,如下图,
令,
则由已知条件知,方程在区间上有两个不等的实根,
则,即实数的取值范围为.
故答案为:
【点睛】本题主要考查了分段函数的图象,二次方程根的分布,换元法,数形结合,属于难题 .
14、
【解析】求得长方体外接球的半径,从而求得球的表面积.
【详解】由题知,球O的半径为,
则球O的表面积为
故答案为:
15、
【解析】利用二倍角余弦公式可得令,结合二次函数的图象与性质得到结果.
【详解】由题意得:
令,则
∵在上单调递减,
∴的值域为:
故答案为:
【点睛】本题给出含有三角函数式的“类二次”函数,求函数的值域.着重考查了三角函数的最值和二次函数在闭区间上的值域等知识,属于中档题
16、3
【解析】根据弧长公式求出,,再由根据扇形的面积公式求解即可.
【详解】设,
因为弧,弧,,
所以,,
所以,,
又扇形的面积为,扇形的面积为,
所以扇环ABCD的面积
故答案为:3
三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。
17、(Ⅰ)最小正周期是,对称轴方程为;(Ⅱ)时,函数取得最小值,最小值为-2,时,函数取得最大值,最大值为1.
【解析】(Ⅰ)利用二倍角公式及辅助角公式将函数化简,再根据正弦函数的性质求出对称轴及最小正周期;
(Ⅱ)由的取值范围,求出的取值范围,再根据正弦函数的性质计算可得;
【详解】解:(Ⅰ)由与得
所以的最小正周期是;
令,解得,即函数的对称轴为;
(Ⅱ)当时,
所以,当,即时,函数取得最小值,最小值为
当,即时,函数取得最大值,最大值为.
18、(1)的定义域为,奇函数;
(2).
【解析】(1)由求定义域,再利用奇偶性的定义判断其奇偶性;
(2)将对于,不等式恒成立,利用对数函数的单调性转化为对于,不等式恒成立求解.
【小问1详解】
解:由函数,
得,即,
解得或,
所以函数的定义域为,关于原点对称,
又,
所以 奇函数;
【小问2详解】
因为对于,不等式恒成立,
所以对于,不等式恒成立,
所以对于,不等式恒成立,
所以对于,不等式恒成立,
令,则 在 上递增,
所以 ,
所以.
19、(1)选择模型②:,;
(2)441.
【解析】(1)根据表格数据的变化趋势选择函数模型,再将数据代入解析式求参数值,即可得解析式.
(2)由题设及(1)所得解析式求的解析式,再由分段函数的性质,结合分式型函数最值的求法求的最小值
【小问1详解】
由表格数据知,当时间x变换时,先增后减,而①;③;④都是单调函数,
所以选择模型②:,
由,可得,解得,
由,解得,,
所以日销售量与时间x的变化的关系式为
【小问2详解】
由(2)知:,
所以,
即,
当,时,
由基本不等式,可得,当且仅当时,即时等号成立,
当,时,为减函数,
所以函数的最小值为,
综上,当时,函数取得最小值441
20、(1)A∩B={x|-1<x<2};(2) .
【解析】(1)将集合A,B进行化简,再根据集合的交集运算即可求得结果;(2)由题意知-1,2为方程的两根,代入方程联立方程组,即可解得结果.
试题解析:
解:(1)A={x|-1<x<3},
B={x|-3<x<2},
∴
(2)-1,2为方程x2+ax+b=0的两根
∴
∴.
考点:集合的运算;方程与不等式的综合应用.
21、(1)
(2)
【解析】(1)由偶函数的定义得对任意的实数恒成立,进而整理得恒成立,故;
(2)设,进而得唯一实数根,使得,即,故,再结合得得答案.
【小问1详解】
解:因为是偶函数,
所以对于任意的实数,有,
所以对任意的实数恒成立,即恒成立,
所以,即,
【小问2详解】
解:设,
因为当时,,
所以在区间上无实数根,
当时,因为,,
所以,使得,
又在上单调递减,
所以存在唯一实数根;
因为,所以,
又,所以,
所以.
所以
展开阅读全文