收藏 分销(赏)

2026届福建省东山第二中学数学高一上期末考试模拟试题含解析.doc

上传人:y****6 文档编号:12791519 上传时间:2025-12-08 格式:DOC 页数:16 大小:854KB 下载积分:12.58 金币
下载 相关 举报
2026届福建省东山第二中学数学高一上期末考试模拟试题含解析.doc_第1页
第1页 / 共16页
2026届福建省东山第二中学数学高一上期末考试模拟试题含解析.doc_第2页
第2页 / 共16页


点击查看更多>>
资源描述
2026届福建省东山第二中学数学高一上期末考试模拟试题 注意事项 1.考生要认真填写考场号和座位序号。 2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。 3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.函数 的最大值与最小值分别为(  ) A.3,-1 B.3,-2 C.2,-1 D.2,-2 2.如图,直线与单位圆相切于点,射线从出发,绕着点逆时针旋转,在旋转的过程中,记(),所经过的单位圆内区域(阴影部分)的面积为,记,则下列选项判断正确的是 A.当时, B.对任意,且,都有 C.对任意,都有 D.对任意,都有 3.玉雕在我国历史悠久,拥有深厚的文化底蕴,数千年来始终以其独特的内涵与魅力深深吸引着世人.玉雕壁画是采用传统的手工雕刻工艺,加工生产成的玉雕工艺画.某扇形玉雕壁画尺寸(单位:)如图所示,则该壁画的扇面面积约为() A. B. C. D. 4.若,,则的值为   A. B. C. D. 5.符号函数是一个很有用的函数,符号函数能够把函数的符号析离出来,其表达式为若定义在上的奇函数,当时,,则的图象是() A. B. C. D. 6.如图,在平面四边形中,,,,将其沿对角线折成四面体,使平面平面,若四面体顶点在同一球面上,则该球的表面积为(  ) A. B. C. D. 7.在空间直角坐标系中,点关于平面的对称点是 A. B. C. D. 8.已知函数恰有2个零点,则实数a取值范围是( ) A. B. C. D. 9.幂函数的图象关于轴对称,且在上是增函数,则的值为() A. B. C. D.和 10.复利是一种计算利息的方法.即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱1000元,存入银行,年利率为2.25%;若放入微信零钱通或 者支付宝的余额宝,年利率可达4.01%.如果将这1000元选择合适方式存满5年,可以多获利息( )元.(参考数据:) A.176 B.100 C.77 D.88 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知函数 若函数有三个不同的零点,且,则的取值范围是____ 12.若则______ 13.已知函数,若关于方程恰好有6个不相等的实数解,则实数的取值范围为__________. 14.已知长方体的8个顶点都在球的球面上,若,,,则球的表面积为___________. 15.函数的值域为_____________ 16.如图,扇环ABCD中,弧,弧,,则扇环ABCD的面积__________ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知函数 (Ⅰ)求的最小正周期及对称轴方程; (Ⅱ)当时,求函数的最大值、最小值,并分别求出使该函数取得最大值、最小值时的自变量的值. 18.已知函数 (1)求函数的定义域,并判断函数的奇偶性; (2)对于,不等式恒成立,求实数的取值范围 19.近来,国内多个城市纷纷加码布局“夜经济”,以满足不同层次的多元消费,并拉动就业、带动创业,进而提升区域经济发展活力.某夜市的一位工艺品售卖者,通过对每天销售情况的调查发现:该工艺品在过去的一个月内(以30天计),每件的销售价格(单位:元)与时间x(单位:天)的函数关系近似满足,日销售量(单位:件)与时间x(单位:天)的部分数据如下表所示: x 10 15 20 25 30 50 55 60 55 50 (1)给出以下四个函数模型: ①;②;③;④ 请你根据上表中的数据,从中选择你认为最合适的一种函数模型来描述日销售量与时间x的变化关系,并求出该函数的解析式; (2)设该工艺品的日销售收入为(单位:元),求的最小值 20.已知不等式的解集为A,不等式的解集为B. (1)求A∩B; (2)若不等式的解集为A∩B,求的值 21.已知(其中a为常数,且)是偶函数. (1)求实数m的值; (2)证明方程有且仅有一个实数根,若这个唯一的实数根为,试比较与的大小. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、D 【解析】分析:将化为,令,可得关于t的二次函数,根据t的取值范围,求二次函数的最值即可. 详解:利用同角三角函数关系化简, 设,则, 根据二次函数性质当时,y取最大值2,当时,y取最小值. 故选D. 点睛:本题考查三角函数有关的最值问题,此类问题一般分为两类,一种是解析式化为的形式,用换元法求解; 另一种是将解析式化为的形式,根据角的范围求解. 2、C 【解析】对于,当,故错误;对于,由题可知对于任意,为增函数,所以与的正负相同,则,故错误;对于,由,得对于任意,都有;对于,当时,,故错误. 故选C D对任意,都有 3、D 【解析】利用扇形的面积公式,利用大扇形面积减去小扇形面积即可. 【详解】如图,设,,由弧长公式可得解得,,设扇形,扇形的面积分别为,则该壁画的扇面面积约为 . 故选:. 4、A 【解析】由两角差的正切公式展开计算可得 【详解】解:,,则, 故选A 【点睛】本题考查两角差的正切公式:,对应还应该掌握两角和的正切公式,及正弦余弦公式.本题是基础 5、C 【解析】根据函数的奇偶性画出的图象,结合的知识确定正确答案. 【详解】依题意,是定义在上的奇函数,图象关于原点对称. 当时,, 结合的奇偶性,作出的大致图象如下图所示, 根据的定义可知,选项C符合题意. 故选:C 6、B 【解析】由题意,的中点就是球心,求出球的半径,即可得到球的表面积 【详解】解:由题意,四面体顶点在同一个球面上,和都是直角三角形, 所以的中点就是球心,所以,球的半径为:, 所以球的表面积为: 故选B 【点睛】本题是基础题,考查四面体的外接球的表面积的求法,找出外接球的球心,是解题的关键,考查计算能力,空间想象能力 7、C 【解析】关于平面对称的点坐标相反,另两个坐标相同,因此结论为 8、D 【解析】由在区间上单调递减,分类讨论,,三种情况,根据零点个数求出实数a的取值范围. 【详解】函数在区间上单调递减,且方程的两根为. 若时,由解得或,满足题意. 若时,,,当时,,即函数在区间上只有一个零点,因为函数恰有2个零点,所以且. 当时,,,此时函数有两个零点,满足题意. 综上, 故选:D 9、D 【解析】分别代入的值,由幂函数性质判断函数增减性即可. 【详解】因为,, 所以当时,,由幂函数性质得,在上是减函数; 所以当时,,由幂函数性质得,在上是常函数; 所以当时,,由幂函数性质得,图象关于 y 轴对称,在上是增函数; 所以当时,,由幂函数性质得,图象关于 y 轴对称,在上是增函数; 故选:D 10、B 【解析】由题意,某同学有压岁钱1000元,分别计算存入银行和放入微信零钱通或者支付宝的余额宝所得利息,即可得到答案 【详解】由题意,某同学有压岁钱1000元,存入银行,年利率为2.25%,若在银行存放5年,可得金额为元,即利息为元,若放入微信零钱通或者支付宝的余额宝时,利率可达4.01%,若存放5年,可得金额为元,即利息为元,所以将这1000元选择合适方式存满5年,可以多获利息元,故选B 【点睛】本题主要考查了等比数列的实际应用问题,其中解答中认真审题,准确理解题意,合理利用等比数列的通项公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题 二、填空题:本大题共6小题,每小题5分,共30分。 11、; 【解析】作图可知: 点睛:利用函数零点情况求参数值或取值范围的方法 (1)利用零点存在的判定定理构建不等式求解. (2)分离参数后转化为函数的值域(最值)问题求解. (3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解. 12、 【解析】 13、 【解析】作出函数的简图,换元,结合函数图象可知原方程有6根可化为在区间上有两个不等的实根,列出不等式组求解即可. 【详解】当,结合“双勾”函数性质可画出函数的简图,如下图, 令, 则由已知条件知,方程在区间上有两个不等的实根, 则,即实数的取值范围为. 故答案为: 【点睛】本题主要考查了分段函数的图象,二次方程根的分布,换元法,数形结合,属于难题 . 14、 【解析】求得长方体外接球的半径,从而求得球的表面积. 【详解】由题知,球O的半径为, 则球O的表面积为 故答案为: 15、 【解析】利用二倍角余弦公式可得令,结合二次函数的图象与性质得到结果. 【详解】由题意得: 令,则 ∵在上单调递减, ∴的值域为: 故答案为: 【点睛】本题给出含有三角函数式的“类二次”函数,求函数的值域.着重考查了三角函数的最值和二次函数在闭区间上的值域等知识,属于中档题 16、3 【解析】根据弧长公式求出,,再由根据扇形的面积公式求解即可. 【详解】设, 因为弧,弧,, 所以,, 所以,, 又扇形的面积为,扇形的面积为, 所以扇环ABCD的面积 故答案为:3 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(Ⅰ)最小正周期是,对称轴方程为;(Ⅱ)时,函数取得最小值,最小值为-2,时,函数取得最大值,最大值为1. 【解析】(Ⅰ)利用二倍角公式及辅助角公式将函数化简,再根据正弦函数的性质求出对称轴及最小正周期; (Ⅱ)由的取值范围,求出的取值范围,再根据正弦函数的性质计算可得; 【详解】解:(Ⅰ)由与得 所以的最小正周期是; 令,解得,即函数的对称轴为; (Ⅱ)当时, 所以,当,即时,函数取得最小值,最小值为 当,即时,函数取得最大值,最大值为. 18、(1)的定义域为,奇函数; (2). 【解析】(1)由求定义域,再利用奇偶性的定义判断其奇偶性; (2)将对于,不等式恒成立,利用对数函数的单调性转化为对于,不等式恒成立求解. 【小问1详解】 解:由函数, 得,即, 解得或, 所以函数的定义域为,关于原点对称, 又, 所以 奇函数; 【小问2详解】 因为对于,不等式恒成立, 所以对于,不等式恒成立, 所以对于,不等式恒成立, 所以对于,不等式恒成立, 令,则 在 上递增, 所以 , 所以. 19、(1)选择模型②:,; (2)441. 【解析】(1)根据表格数据的变化趋势选择函数模型,再将数据代入解析式求参数值,即可得解析式. (2)由题设及(1)所得解析式求的解析式,再由分段函数的性质,结合分式型函数最值的求法求的最小值 【小问1详解】 由表格数据知,当时间x变换时,先增后减,而①;③;④都是单调函数, 所以选择模型②:, 由,可得,解得, 由,解得,, 所以日销售量与时间x的变化的关系式为 【小问2详解】 由(2)知:, 所以, 即, 当,时, 由基本不等式,可得,当且仅当时,即时等号成立, 当,时,为减函数, 所以函数的最小值为, 综上,当时,函数取得最小值441 20、(1)A∩B={x|-1<x<2};(2) . 【解析】(1)将集合A,B进行化简,再根据集合的交集运算即可求得结果;(2)由题意知-1,2为方程的两根,代入方程联立方程组,即可解得结果. 试题解析: 解:(1)A={x|-1<x<3}, B={x|-3<x<2}, ∴ (2)-1,2为方程x2+ax+b=0的两根 ∴ ∴. 考点:集合的运算;方程与不等式的综合应用. 21、(1) (2) 【解析】(1)由偶函数的定义得对任意的实数恒成立,进而整理得恒成立,故; (2)设,进而得唯一实数根,使得,即,故,再结合得得答案. 【小问1详解】 解:因为是偶函数, 所以对于任意的实数,有, 所以对任意的实数恒成立,即恒成立, 所以,即, 【小问2详解】 解:设, 因为当时,, 所以在区间上无实数根, 当时,因为,, 所以,使得, 又在上单调递减, 所以存在唯一实数根; 因为,所以, 又,所以, 所以. 所以
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服