收藏 分销(赏)

2026届辽宁省抚顺十中数学高一上期末统考模拟试题含解析.doc

上传人:y****6 文档编号:12791511 上传时间:2025-12-08 格式:DOC 页数:14 大小:719KB 下载积分:12.58 金币
下载 相关 举报
2026届辽宁省抚顺十中数学高一上期末统考模拟试题含解析.doc_第1页
第1页 / 共14页
2026届辽宁省抚顺十中数学高一上期末统考模拟试题含解析.doc_第2页
第2页 / 共14页


点击查看更多>>
资源描述
2026届辽宁省抚顺十中数学高一上期末统考模拟试题 注意事项: 1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。 2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.幂函数的图象经过点,则() A.是偶函数,且在上单调递增 B.是偶函数,且在上单调递减 C.是奇函数,且在上单调递减 D.既不是奇函数,也不是偶函数,在上单调递增 2.已知函数,若实数,则函数的零点个数为() A.0 B.1 C.2 D.3 3.已知函数,则 的值等于 A. B. C. D. 4.已知函数,则 A. B.0 C.1 D. 5.已知圆和圆,则两圆的位置关系为 A.内含 B.内切 C.相交 D.外切 6.已知集合A={x|x<2},B={x≥1},则A∪B=(  ) A. B. C. D.R 7.函数的最大值为 A.2 B. C. D.4 8.下列四个集合中,是空集的是( ) A. B. C. D. 9.我国古代《九章算术》里,记载了一个“商功”的例子:今有刍童,下广二丈,袤三丈,上广三丈,袤四丈,高三丈.问积几何?其意思是:今有上下底面皆为长方形的草垛(如图所示),下底宽2丈,长3丈;上底宽3丈,长4丈;高3丈.问它的体积是多少?该书提供的算法是:上底长的2倍与下底长的和与上底宽相乘,同样下底长的2倍与上底长的和与下底宽相乘,将两次运算结果相加,再乘以高,最后除以6.则这个问题中的刍童的体积为 A.13.25立方丈 B.26.5立方丈 C.53立方丈 D.106立方丈 10.函数在区间上的最大值为2,则实数的值为   A.1或 B. C. D.1或 二、填空题:本大题共6小题,每小题5分,共30分。 11.向量与,则向量在方向上的投影为______ 12.已知是定义域为R的奇函数,且当时,,则的值是___________. 13.已知是定义在R上的奇函数,当时,,则在R上的表达式是________ 14.函数定义域是____________ 15.已知角的终边上一点P与点关于y轴对称,角的终边上一点Q与点A关于原点O中心对称,则______ 16.若,则_________ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.如图,在正方体中,为棱、的三等分点(靠近A点). 求证:(1)平面; (2)求证:平面平面. 18.已知函数,函数的最小正周期为,是函数的一条对称轴. (1)求函数的对称中心和单调区间; (2)若,求函数在的最大值和最小值,并写出对应的的值 19.如图,正方形的边长为,,分别为边和上的点,且的周长为2. (1)求证:; (2)求面积的最小值. 20.已知函数 (1)判断f(x)的奇偶性,并说明理由; (2)用定义证明f(x)在(1,+∞)上单调递增; (3)求f(x)在[-2,-1]上的值域 21.对于等式,如果将视为自变量,视为常数,为关于(即)的函数,记为,那么,是幂函数;如果将视为常数,视为自变量,为关于(即)的函数,记为,那么,是指数函数;如果将视为常数,视为自变量为关于(即)的函数,记为,那么,是对数函数.事实上,由这个等式还可以得到更多的函数模型.例如,如果为常数(为自然对数的底数),将视为自变量,则为的函数,记为 (1)试将表示成的函数; (2)函数的性质通常指函数的定义域、值域、单调性、奇偶性等,请根据你学习到的函数知识直接写出该函数的性质,不必证明.并尝试在所给坐标系中画出函数的图象 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、D 【解析】设幂函数方程,将点坐标代入,可求得的值,根据幂函数的性质,即可求得答案. 【详解】设幂函数的解析式为:,将代入解析式得:,解得, 所以幂函数,所以既不是奇函数,也不是偶函数, 且,所以在上单调递增. 故选:D. 2、D 【解析】根据分段函数做出函数的图象,运用数形结合的思想可求出函数的零点的个数,得出选项. 【详解】令,得,根据分段函数的解析式,做出函数的图象,如下图所示,因为,由图象可得出函数的零点个数为3个, 故选:D. 【点睛】本题考查函数零点,考查学生分析解决问题的能力,关键在于做出函数的图象,运用数形结合的思想得出零点个数,属于中档题. 多选题 3、C 【解析】因为,所以,故选C. 4、C 【解析】根据自变量所在的范围先求出,然后再求出 【详解】由题意得, ∴ 故选C 【点睛】根据分段函数的解析式求函数值时,首先要分清自变量所属的范围,然后再代入解析式后可得结果,属于基础题 5、B 【解析】由于圆,即  表示以 为圆心,半径等于1的圆 圆,即,表示以为圆心,半径等于3的圆 由于两圆的圆心距等于 等于半径之差,故两个圆内切 故选B 6、D 【解析】利用并集定义直接求解即可 【详解】∵集合A={x|x<2},B={x≥1}, ∴A∪B=R. 故选D 【点睛】本题考查并集的求法,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题 7、B 【解析】根据两角和的正弦公式得到函数的解析式,结合函数的性质得到结果. 【详解】函数根据两角和的正弦公式得到,因为x根据正弦函数的性质得到最大值为. 故答案为B. 【点睛】这个题目考查了三角函数的两角和的正弦公式的应用,以及函数的图像的性质的应用,题型较为基础. 8、D 【解析】对每个集合进行逐一检验,研究集合内的元素是否存在即可选出. 【详解】选项A,; 选项B,; 选项C,; 选项D,,方程无解,. 选:D. 9、B 【解析】根据题目给出的体积计算方法,将几何体已知数据代入计算,求得几何体体积 【详解】由题,刍童的体积为立方丈 【点睛】本题考查几何体体积的计算,正确利用题目条件,弄清楚问题本质是关键 10、A 【解析】化简可得,再根据二次函数的对称轴与区间的位置关系,结合正弦函数的值域分情况讨论即可 【详解】因,令,故, 当时,在单调递减 所以,此时,符合要求; 当时,在单调递增,在单调递减 故,解得舍去 当时,在单调递增 所以,解得,符合要求; 综上可知或 故选:A. 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】在方向上的投影为 考点:向量的投影 12、1 【解析】首先根据时的解析式求出,然后再根据函数的奇偶性即可求出答案. 【详解】因为当时,,所以, 又因为是定义域为R的奇函数,所以. 故答案为:1. 13、 【解析】根据奇函数定义求出时的解析式,再写出上的解析式即可 【详解】时,,, 所以 故答案为: 【点睛】本题考查函数的奇偶性,掌握奇函数的定义是解题关键 14、 【解析】根据偶次方根式下被开方数非负,有因此函数定义域,注意结果要写出解集性质. 考点:函数定义域 15、0 【解析】根据对称,求出P、Q坐标,根据三角函数定义求出﹒ 【详解】解:角终边上一点与点关于轴对称, 角的终边上一点与点关于原点中心对称, 由三角函数的定义可知, ﹒ 故答案为:0 16、 【解析】先求得,然后求得. 【详解】, . 故答案为: 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1)见解析;(2)见解析. 【解析】(1)欲证:平面,根据直线与平面平行的判定定理可知,只需证与平面内一条直线平行,连接,可知,则,又平面,平面,满足定理所需条件; (2)欲证:平面平面,根据面面垂直的判定定理可知,在平面内一条直线与平面垂直,而平面,平面,则,,满足线面垂直的判定定理则平面,而平面,满足定理所需条件 【详解】(1)证明:连接,在正方体中,对角线, 又因为、为棱、的三等分点, 所以,则, 又平面,平面, 所以平面 (2)因为在正方体中, 因为平面,而平面, 所以, 又因为在正方形中,, 而, 平面,平面, 所以平面, 又因为平面, 所以平面平面 【点睛】本题主要考查线面平行的判定定理和线面垂直的判定定理,以及考查对基础知识的综合应用能力和基本定理的掌握能力 18、(1)对称中心是,单调递增区间是, 单调递减区间是(2)当时,,当时, 【解析】(1)由函数的最小正周期,求得,再根据当时,函数取到最值求得,根据函数的性质求对称中心和单调区间;(2)写出的解析式,根据定义域,求最值 【详解】(1),,,所以,, 对称中心是,单调递增区间是, 单调递减区间是 (2),, 当时,,当时, 【点睛】三角函数最值问题要注意整体代换思想的体现,由的取值范围推断的取值范围 19、(1)证明见解析;(2). 【解析】(1)补形得证明其与全等,从而得证. (2)引进参数,由已知建立参数变量之间的等量关系,再用方程根的判别式获得变量最值,进一步得到所求面积最值. 【详解】(1)如图:延长至,使,连接,则. 故,,. 又. ,即. (2)设,,,则, ,, 于是, 整理得:, . 即. 又,,当且仅当时等式成立. 此时, 因此当,时,取最小值. 的最小值为. 【点睛】方法点睛:引进参数建立参变量方程,再变换主次元,利用方程根的判别式,确定参数取值范围是求最值的方法之一. 20、(1)f(x)为奇函数,理由见解析 (2)证明见解析(3)[-,-2] 【解析】(1)根据奇偶性的定义判断; (2)由单调性的定义证明; (3)由单调性得值域 【小问1详解】 f(x)为奇函数 由于f(x)的定义域为,关于原点对称, 且,所以f(x)为在上的奇函数 (画图正确,由图得出正确结论,也可以得分) 【小问2详解】 证明:设任意,, 有 由,得, , 即,所以函数f(x)在(1,+∞)上单调递增 【小问3详解】 由(1),(2)得函数f(x)在[-2,-1]上单调递增, 故f(x)的最大值为,最小值为, 所以f(x)在[-2,-1]的值域为[-,-2] 21、(1),(,) (2)答案见解析 【解析】(1)结合对数运算的知识求得. (2)根据的解析式写出的性质,并画出图象. 【小问1详解】 依题意因为,, 两边取以为底的对数得, 所以将y表示为x的函数,则,(,), 即,(,); 【小问2详解】 函数性质: 函数的定义域为, 函数值域, 函数是非奇非偶函数, 函数的在上单调递减,在上单调递减 函数的图象:
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服