资源描述
,回扣,7,立体几何,考前回扣,1/53,基础回归,易错提醒,回归训练,2/53,基础回归,3/53,1.,概念了解,(1),四棱柱、直四棱柱、正四棱柱、正方体、平行六面体、直平行六面体、长方体之间关系,.,4/53,(2),三视图,三视图正,(,主,),视图、侧,(,左,),视图、俯视图分别是从几何正前方、正左方、正上方观察几何体画出轮廓线,.,画三视图基本要求:正俯一样长,俯侧一样宽,正侧一样高,.,三视图排列规则:俯视图放在正,(,主,),视图下面,长度与正,(,主,),视图一样;侧,(,左,),视图放在正,(,主,),视图右面,高度和正,(,主,),视图一样,宽度与俯视图一样,.,5/53,2.,柱、锥、台、球体表面积和体积,6/53,7/53,3.,平行、垂直关系转化示意图,(1),8/53,(2),两个结论,9/53,4.,用空间向量证实平行垂直,设直线,l,方向向量为,a,(,a,1,,,b,1,,,c,1,),,平面,,,法向量分别为,(,a,2,,,b,2,,,c,2,),,,v,(,a,3,,,b,3,,,c,3,).,则有:,(1),线面平行,l,a,a,0,a,1,a,2,b,1,b,2,c,1,c,2,0.,(2),线面垂直,l,a,a,k,a,1,ka,2,,,b,1,kb,2,,,c,1,kc,2,.,(3),面面平行,v,v,a,2,a,3,,,b,2,b,3,,,c,2,c,3,.,(4),面面垂直,v,v,0,a,2,a,3,b,2,b,3,c,2,c,3,0.,10/53,5.,用向量求空间角,(1),直线,l,1,,,l,2,夹角,有,cos,|cos,l,1,,,l,2,|(,其中,l,1,,,l,2,分别是直线,l,1,,,l,2,方向向量,).,(2),直线,l,与平面,夹角,有,sin,|cos,l,,,n,|(,其中,l,是直线,l,方向向量,,n,是平面,法向量,).,(3),平面,,,夹角,有,cos,|cos,n,1,,,n,2,|,,则,l,二面角平面角为,或,(,其中,n,1,,,n,2,分别是平面,,,法向量,).,11/53,易错提醒,12/53,1.,混同,“,点,A,在直线,a,上,”,与,“,直线,a,在平面,内,”,数学符号关系,应表示为,A,a,,,a,.,2.,在由三视图还原为空间几何体实际形状时,依据三视图规则,空间几何体可见轮廓线在三视图中为实线,不可见轮廓线为虚线,.,在还原空间几何体实际形状时普通是以正,(,主,),视图和俯视图为主,.,13/53,4.,不清楚空间线面平行与垂直关系中判定定理和性质定理,忽略判定定理和性质定理中条件,造成判断犯错,.,如由,,,l,,,m,l,,易误得出,m,结论,就是因为忽略面面垂直性质定理中,m,限制条件,.,5.,注意图形翻折与展开前后变与不变量以及位置关系,.,对照前后图形,搞清楚变与不变元素后,再立足于不变元素位置关系与数量关系去探求改变后元素在空间中位置与数量关系,.,14/53,6.,几个角范围,两条异面直线所成角,0,90,;,直线与平面所成角,0,90,;,二面角,0,180,;,两条相交直线所成角,(,夹角,)0,90,;,直线倾斜角,0,180,;,两个向量夹角,0,180,;,锐角,0,90.,15/53,7.,空间向量求角时易忽略向量夹角与所求角之间关系,如求解二面角时,不能依据几何体判断二面角范围,忽略向量方向,误认为两个法向量夹角就是所求二面角,造成犯错,.,16/53,III,回归训练,17/53,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1.(,重庆外国语学校月考,),一个几何体三视图如图所表示,则这个几何体体积是,18/53,答案,解析,2.,直三棱柱,ABC,A,1,B,1,C,1,直观图及三视图如图所表示,,D,为,AC,中点,则以下命题是假命题是,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,A.,AB,1,平面,BDC,1,B.,A,1,C,平面,BDC,1,C.,直三棱柱体积,V,4 D.,直三棱柱外接球表面积为,4 ,19/53,解析,由三视图可知,直三棱柱,ABC,A,1,B,1,C,1,侧面,B,1,C,1,CB,是边长为,2,正方形,底面,ABC,是等腰直角三角形,,AB,BC,,,AB,BC,2.,连接,B,1,C,交,BC,1,于点,O,,连接,OD,.,在,CAB,1,中,,O,,,D,分别是,B,1,C,,,AC,中点,,OD,AB,1,,,又,OD,平面,BDC,1,,,AB,1,平面,BDC,1,,,AB,1,平面,BDC,1,.,故,A,正确;,在直三棱柱,ABC,A,1,B,1,C,1,中,,AA,1,平面,ABC,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,20/53,AA,1,BD,.,又,AB,BC,2,,,D,为,AC,中点,,BD,AC,,,又,AA,1,AC,A,,,AA,1,,,AC,平面,AA,1,C,1,C,,,BD,平面,AA,1,C,1,C,.,BD,A,1,C,.,又,A,1,B,1,B,1,C,1,,,A,1,B,1,B,1,B,,,A,1,B,1,平面,B,1,C,1,CB,,,A,1,B,1,BC,1,.,BC,1,B,1,C,,且,A,1,B,1,B,1,C,B,1,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,21/53,BC,1,平面,A,1,B,1,C,.,BC,1,A,1,C,,,又,BD,BC,1,B,,,BD,,,BC,1,平面,BDC,1,,,A,1,C,平面,BDC,1,.,故,B,正确;,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,22/53,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,3.,已知直线,l,,,m,和平面,,则以下结论正确是,A.,若,l,m,,,m,,则,l,B.,若,l,,,m,,则,l,m,C.,若,l,m,,,l,,则,m,D.,若,l,,,m,,则,l,m,解析,若,l,m,,,m,,则,l,或,l,,,故,A,错误;,若,l,,,m,,则,l,m,,,B,正确;,若,l,m,,,l,,则,m,或,m,,故,C,错误;,若,l,,,m,,则,l,m,或,l,,,m,异面,故选,B.,23/53,解析,由题意知,,l,,,l,,,n,,,n,l,.,故选,C.,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,4.,已知相互垂直平面,,,交于直线,l,.,若直线,m,,,n,满足,m,,,n,,,则,A.,m,l,B.,m,n,C.,n,l,D.,m,n,24/53,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,5.,已知,m,,,n,为异面直线,,m,平面,,,n,平面,.,直线,l,满足,l,m,,,l,n,,,l,,,l,,则,A.,且,l,B.,且,l,C.,与,相交,且交线垂直于,l,D.,与,相交,且交线平行于,l,解析,假设,,由,m,平面,,,n,平面,,得,m,n,,,这与已知,m,,,n,为异面直线矛盾,那么,与,相交,,设交线为,l,1,,则,l,1,m,,,l,1,n,,在直线,m,上任取一点作,n,1,平行于,n,,,那么,l,1,和,l,都垂直于直线,m,与,n,1,所确定平面,所以,l,1,l,.,25/53,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,6.,如图,正方体,AC,1,棱长为,1,,过点,A,作平面,A,1,BD,垂线,垂足为点,H,,以下四个命题:,点,H,是,A,1,BD,垂心;,AH,垂直于平面,CB,1,D,1,;,直线,AH,和,BB,1,所成角为,45,;,AH,延长线经过点,C,1,,其中假命题个数为,A.0 B.1,C.2 D.3,26/53,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析,AB,AA,1,AD,,,BA,1,BD,A,1,D,,,三棱锥,A,BA,1,D,为正三棱锥,,点,H,是,A,1,BD,垂心,故,正确;,平面,A,1,BD,与平面,B,1,CD,1,平行,,AH,平面,A,1,BD,,,AH,平面,CB,1,D,1,,故,正确;,AA,1,BB,1,,,A,1,AH,就是直线,AH,和,BB,1,所成角,,在直角三角形,AHA,1,中,,27/53,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,依据正方体对称性得到,AH,延长线经过,C,1,,,故,正确,故选,B.,28/53,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,7.,将正方体纸盒展开如图,直线,AB,,,CD,在原正,方体位置关系是,A.,平行,B.,垂直,C.,相交成,60,角,D.,异面且成,60,角,29/53,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析,如图,直线,AB,,,CD,异面,.,因为,CE,AB,,,所以,ECD,即为直线,AB,,,CD,所成角,,因为,CDE,为等边三角形,,故,ECD,60.,30/53,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析,设球半径为,R,,由题意可得,(2,R,),2,3,2,4,2,5,2,50,,,4,R,2,50,,球表面积为,S,4,R,2,50.,31/53,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,9.,如图,三棱锥,A,BCD,棱长全相等,点,E,为,AD,中点,则直线,CE,与,BD,所成角余弦值为,32/53,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析,方法一,取,AB,中点,G,,连接,EG,,,CG,.,E,为,AD,中点,,EG,BD,.,GEC,为,CE,与,BD,所成角,.,设,AB,1,,,33/53,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,34/53,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,35/53,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析,如图所表示建立空间直角坐标系,设正三棱柱棱长为,2,,,36/53,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,平行,而,BD,平面,BDC,,,MN,平面,BDC,,,所以,MN,平面,BDC,.,37/53,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,12.,已知长方体,ABCD,A,B,C,D,,,E,,,F,,,G,,,H,分别是棱,AD,,,BB,,,B,C,,,DD,中点,从中任取两点确定直线中,与平面,AB,D,平行有,_,条,.,6,38/53,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析,如图,连接,EG,,,EH,,,FG,,,EH,綊,FG,,,EFGH,四点共面,由,EG,AB,,,EH,AD,,,EG,EH,E,,,AB,AD,A,,,可得平面,EFGH,与平面,AB,D,平行,,符合条件共有,6,条,.,39/53,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,13.,点,P,在正方形,ABCD,所在平面外,,PA,平面,ABCD,,,PA,AB,,则,PB,与,AC,所成角大小是,_.,40/53,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析,以,A,为原点,,AB,所在直线为,x,轴,,AD,所在直线为,y,轴,,AP,所在直线为,z,轴建立空间直角坐标系,,设正方形,ABCD,边长为,1,,,41/53,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,42/53,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析,中平行于同一平面两平面平行是正确;,中,m,,,可能平行,相交或直线在平面内;,中由面面垂直判定定理可知结论正确;,中,m,,,可能平行或线在面内,.,43/53,证实,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,15.,如图,(1),,在边长为,4,菱形,ABCD,中,,DAB,60,,点,E,,,F,分别是边,CD,,,CB,中点,,AC,EF,O,,沿,EF,将,CEF,翻折到,PEF,,连接,PA,,,PB,,,PD,,得到如图,(2),所表示五棱锥,P,ABFED,,且,PB,.,(1),求证:,BD,PA,;,44/53,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,证实,点,E,,,F,分别是边,CD,,,CB,中点,,BD,EF,.,菱形,ABCD,对角线相互垂直,,BD,AC,.,EF,AC,.,EF,AO,,,EF,PO,.,AO,平面,POA,,,PO,平面,POA,,,AO,PO,O,,,EF,平面,POA,,,BD,平面,POA,,,又,PA,平面,POA,,,BD,PA,.,45/53,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,(2),求四棱锥,P,BFED,体积,.,46/53,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解,设,AO,BD,H,.,连接,BO,,,DAB,60,,,ABD,为等边三角形,,BD,4,,,BH,2,,,在,PBO,中,,BO,2,PO,2,10,PB,2,,,PO,BO,.,47/53,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,PO,EF,,,EF,BO,O,,,EF,平面,BFED,,,BO,平面,BFED,,,OP,平面,BFED,,,四棱锥,P,BFED,体积,48/53,证实,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,16.,如图,四棱锥,S,ABCD,底面是正方形,,SD,平面,ABCD,,,SD,AD,a,,点,E,是,SD,上点,且,DE,a,(0,1).,(1),求证:对任意,(0,1,,都有,AC,BE,;,49/53,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,证实,如图,建立空间直角坐标系,Dxyz,,,则,A,(,a,0,0),,,B,(,a,,,a,0),,,C,(0,,,a,0),,,D,(0,0,0),,,E,(0,0,,,a,).,50/53,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,(2),若二面角,C,AE,D,大小为,60,,求,值,.,51/53,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解,显然,n,(0,1,0),是平面,ADE,一个法向量,设平面,ACE,法向量为,m,(,x,,,y,,,z,),,,52/53,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,取,z,1,,则,x,y,,,m,(,,,,,1),,,二面角,C,AE,D,大小为,60,,,53/53,
展开阅读全文