资源描述
5.2,平面向量基本定理及坐标表示,1/62,基础知识自主学习,课时训练,题型分类深度剖析,内容索引,2/62,基础知识自主学习,3/62,1.,平面向量基本定理,假如,e,1,、,e,2,是同一平面内两个,向量,那么对于这一平面内任意向量,a,,,一对实数,1,、,2,,使,a,_,.,其中,不共线向量,e,1,、,e,2,叫做表示这一平面内全部向量一组,.,2.,平面向量坐标运算,(1),向量加法、减法、数乘及向量模,设,a,(,x,1,,,y,1,),,,b,(,x,2,,,y,2,),,则,a,b,,,a,b,,,a,,,|,a,|,.,知识梳理,不共线,有且只有,1,e,1,2,e,2,基底,(,x,1,x,2,,,y,1,y,2,),(,x,1,x,2,,,y,1,y,2,),(,x,1,,,y,1,),4/62,(2),向量坐标求法,若向量起点是坐标原点,则终点坐标即为向量坐标,.,设,A,(,x,1,,,y,1,),,,B,(,x,2,,,y,2,),,则,,,.,3.,平面向量共线坐标表示,设,a,(,x,1,,,y,1,),,,b,(,x,2,,,y,2,),,其中,b,0,.,a,、,b,共线,.,(,x,2,x,1,,,y,2,y,1,),x,1,y,2,x,2,y,1,0,5/62,1.,若,a,与,b,不共线,,a,b,0,,则,0.,2.,设,a,(,x,1,,,y,1,),,,b,(,x,2,,,y,2,),,假如,x,2,0,,,y,2,0,,则,a,b,知识拓展,6/62,判断以下结论是否正确,(,请在括号中打,“”,或,“”,),(1),平面内任何两个向量都能够作为一组基底,.(,),(2),若,a,,,b,不共线,且,1,a,1,b,2,a,2,b,,则,1,2,,,1,2,.(,),(3),平面向量基底不唯一,只要基底确定后,平面内任何一个向量都可被这组基底唯一表示,.(,),(5),当向量起点在坐标原点时,向量坐标就是向量终点坐标,.(,),思索辨析,7/62,考点自测,1.,设,e,1,,,e,2,是平面内一组基底,那么,A.,若实数,1,,,2,使,1,e,1,2,e,2,0,,则,1,2,0,B.,空间内任一向量,a,能够表示为,a,1,e,1,2,e,2,(,1,,,2,为实数,),C.,对实数,1,,,2,,,1,e,1,2,e,2,不一定在该平面内,D.,对平面内任一向量,a,,使,a,1,e,1,2,e,2,实数,1,,,2,有没有数对,答案,8/62,答案,解析,A.(,7,,,4)B.(7,,,4),C.(,1,,,4)D.(1,,,4),9/62,答案,解析,由已知条件可得,m,a,n,b,(2,m,,,3,m,),(,n,,,2,n,),(2,m,n,,,3,m,2,n,),,,a,2,b,(2,,,3),(,2,,,4),(4,,,1).,m,a,n,b,与,a,2,b,共线,,10/62,答案,解析,4.(,教材改编,),已知,ABCD,顶点,A,(,1,,,2),,,B,(3,,,1),,,C,(5,,,6),,则顶点,D,坐标为,_.,(1,,,5),11/62,题型分类深度剖析,12/62,题型一平面向量基本定理应用,答案,解析,13/62,答案,解析,14/62,15/62,平面向量基本定理应用实质和普通思绪,(1),应用平面向量基本定理表示向量实质是利用平行四边形法则或三角形法则进行向量加、减或数乘运算,.,(2),用向量基本定理处理问题普通思绪是先选择一组基底,并利用该基底将条件和结论表示成向量形式,再经过向量运算来处理,.,思维升华,16/62,答案,解析,17/62,题型二平面向量坐标运算,答案,解析,由已知,3,c,a,2,b,(,5,,,2),(,8,,,6),(,13,,,4).,18/62,(2)(,丽江模拟,),已知向量,a,(1,,,2),,,b,(,m,,,4),,且,a,b,,则,2,a,b,等于,A.(4,,,0)B.(0,,,4),C.(4,,,8)D.(,4,,,8),因为向量,a,(1,,,2),,,b,(,m,,,4),,且,a,b,,,所以,1,4,2,m,0,,即,m,2,,,所以,2,a,b,2,(1,,,2),(,2,,,4),(4,,,8).,答案,解析,19/62,向量坐标运算主要是利用加、减、数乘运算法则进行计算,.,若已知有向线段两端点坐标,则应先求出向量坐标,解题过程中要注意方程思想利用及正确使用运算法则,.,思维升华,20/62,跟踪训练,2,(1)(,北京东城区模拟,),向量,a,,,b,,,c,在正方形网格中位置如图所表示,若,c,a,b,(,,,R,),,则,_.,答案,解析,4,21/62,以向量,a,和,b,交点为原点建立如图所表示,平面直角坐标系,(,设每个小正方形边长为,1),,,则,A,(1,,,1),,,B,(6,,,2),,,C,(5,,,1),,,c,a,b,,,(,1,,,3),(,1,,,1),(6,,,2),,,22/62,答案,解析,23/62,题型三平面向量坐标应用,命题点,1,利用向量共线求向量或点坐标,例,3,已知点,A,(4,,,0),,,B,(4,,,4),,,C,(2,,,6),,则,AC,与,OB,交点,P,坐标,为,_.,(3,,,3),答案,解析,24/62,所以点,P,坐标为,(3,,,3).,25/62,所以,(,x,4),6,y,(,2),0,,解得,x,y,3,,,所以点,P,坐标为,(3,,,3).,26/62,命题点,2,利用向量共线求参数,答案,解析,45,又,为锐角,,45.,27/62,答案,解析,28/62,29/62,平面向量共线坐标表示问题常见类型及解题策略,(1),利用两向量共线求参数,.,假如已知两向量共线,求一些参数取值时,利用,“,若,a,(,x,1,,,y,1,),,,b,(,x,2,,,y,2,),,则,a,b,充要条件是,x,1,y,2,x,2,y,1,”,解题比较方便,.,(2),利用两向量共线条件求向量坐标,.,普通地,在求与一个已知向量,a,共线向量时,可设所求向量为,a,(,R,),,然后结合其它条件列出关于,方程,求出,值后代入,a,即可得到所求向量,.,思维升华,30/62,命题点,3,利用平面向量坐标求最值,答案,解析,1,31/62,以点,A,为原点建立如图所表示直角坐标系,,32/62,33/62,跟踪训练,3,(1),已知梯形,ABCD,,其中,AB,CD,,且,DC,2,AB,,三个顶点,A,(1,,,2),,,B,(2,,,1),,,C,(4,,,2),,则点,D,坐标为,_.,答案,解析,(2,,,4),34/62,在梯形,ABCD,中,,AB,CD,,,DC,2,AB,,,设点,D,坐标为,(,x,,,y,),,,(4,x,,,2,y,),2(1,,,1),,即,(4,x,,,2,y,),(2,,,2),,,35/62,y,最小值为,_.,答案,解析,36/62,37/62,38/62,解析法,(,坐标法,),在向量中应用,思想与方法系列,10,建立平面直角坐标系,将向量坐标化,将向量问题转化为函数问题愈加凸显向量代数特征,.,规范解答,思想方法指导,39/62,40/62,41/62,课时训练,42/62,答案,解析,故选,C.,1,2,3,4,5,6,7,8,9,10,11,12,13,43/62,2.,已知点,M,(5,,,6),和向量,a,(1,,,2),,若,3,a,,则点,N,坐标为,A.(2,,,0)B.(,3,,,6),C.(6,,,2)D.(,2,,,0),设,N,(,x,,,y,),,则,(,x,5,,,y,6),(,3,,,6),,,x,2,,,y,0.,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,44/62,a,b,(1,,,2),,,c,(3,,,4),,且,(,a,b,),c,,,3.,已知向量,a,(1,,,2),,,b,(1,,,0),,,c,(3,,,4).,若,为实数,,(,a,b,),c,,则,等于,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,45/62,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,46/62,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,47/62,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,48/62,1,2,3,4,5,6,7,8,9,10,11,12,13,49/62,答案,解析,(,3,,,5),1,2,3,4,5,6,7,8,9,10,11,12,13,50/62,答案,解析,tan,_.,a,b,,,sin 2,1,cos,2,0,,,2sin,cos,cos,2,0,,,2sin,cos,,,1,2,3,4,5,6,7,8,9,10,11,12,13,51/62,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,52/62,1,2,3,4,5,6,7,8,9,10,11,12,13,53/62,答案,解析,(,1,,,0),1,2,3,4,5,6,7,8,9,10,11,12,13,54/62,又,B,,,A,,,D,三点共线,,m,k,,,n,k,(1,),,,m,n,k,,从而,m,n,(,1,,,0).,1,2,3,4,5,6,7,8,9,10,11,12,13,55/62,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,56/62,如图所表示,,1,2,3,4,5,6,7,8,9,10,11,12,13,57/62,1,2,3,4,5,6,7,8,9,10,11,12,13,58/62,解答,12.,已知,A,(1,,,1),,,B,(3,,,1),,,C,(,a,,,b,).,(1),若,A,,,B,,,C,三点共线,求,a,,,b,关系式;,2(,b,1),2(,a,1),0,,即,a,b,2.,1,2,3,4,5,6,7,8,9,10,11,12,13,59/62,解答,(,a,1,,,b,1),2(2,,,2).,点,C,坐标为,(5,,,3).,1,2,3,4,5,6,7,8,9,10,11,12,13,60/62,*13.,如图所表示,,G,是,OAB,重心,,P,,,Q,分别是边,OA,、,OB,上动点,且,P,,,G,,,Q,三点共线,.,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,61/62,证实,另首先,,G,是,OAB,重心,,1,2,3,4,5,6,7,8,9,10,11,12,13,62/62,
展开阅读全文