收藏 分销(赏)

stata命令语句.doc

上传人:a199****6536 文档编号:1267240 上传时间:2024-04-19 格式:DOC 页数:27 大小:64.05KB
下载 相关 举报
stata命令语句.doc_第1页
第1页 / 共27页
stata命令语句.doc_第2页
第2页 / 共27页
点击查看更多>>
资源描述
stata学习心得(网络版存盘) 2009-03-25 18:06 调整变量格式: format x1 %10.3f    ——将x1的列宽固定为10,小数点后取三位 format x1 %10.3g    ——将x1的列宽固定为10,有效数字取三位 format x1 %10.3e    ——将x1的列宽固定为10,采用科学计数法 format x1 %10.3fc    ——将x1的列宽固定为10,小数点后取三位,加入千分位分隔符 format x1 %10.3gc    ——将x1的列宽固定为10,有效数字取三位,加入千分位分隔符 format x1 %-10.3gc    ——将x1的列宽固定为10,有效数字取三位,加入千分位分隔符,加入“-”表示左对齐 合并数据: use "C:\Documents and Settings\xks\桌面\2006.dta", clear merge using "C:\Documents and Settings\xks\桌面\1999.dta" ——将1999和2006的数据按照样本(observation)排列的自然顺序合并起来 use "C:\Documents and Settings\xks\桌面\2006.dta", clear merge id using "C:\Documents and Settings\xks\桌面\1999.dta" ,unique sort ——将1999和2006的数据按照唯一的(unique)变量id来合并,在合并时对id进行排序(sort) 建议采用第一种方法。 对样本进行随机筛选: sample 50 在观测案例中随机选取50%的样本,其余删除 sample 50,count 在观测案例中随机选取50个样本,其余删除 查看与编辑数据: browse x1 x2 if x3>3  (按所列变量与条件打开数据查看器) edit x1 x2 if x3>3    (按所列变量与条件打开数据编辑器) 数据合并(merge)与扩展(append) merge表示样本量不变,但增加了一些新变量;append表示样本总量增加了,但变量数目不变。 one-to-one merge: 数据源自stata tutorial中的exampw1和exampw2 第一步:将exampw1按v001~v003这三个编码排序,并建立临时数据库tempw1 clear use "t:\statatut\exampw1.dta" su                             ——summarize的简写 sort v001 v002 v003 save tempw1 第二步:对exampw2做同样的处理 clear use "t:\statatut\exampw2.dta" su sort v001 v002 v003 save tempw2 第三步:使用tempw1数据库,将其与tempw2合并: clear use tempw1 merge v001 v002 v003 using tempw2 第四步:查看合并后的数据状况: ta _merge                      ——tabulate _merge的简写 su 第五步:清理临时数据库,并删除_merge,以免日后合并新变量时出错 erase tempw1.dta erase tempw2.dta drop _merge 数据扩展append: 数据源自stata tutorial中的fac19和newfac clear use "t:\statatut\fac19.dta" ta region append using "t:\statatut\newfac" ta region 合并后样本量增加,但变量数不变 茎叶图: stem x1,line(2)       (做x1的茎叶图,每一个十分位的树茎都被拆分成两段来显示,前半段为0~4,后半段为5~9) stem x1,width(2)      (做x1的茎叶图,每一个十分位的树茎都被拆分成五段来显示,每个小树茎的组距为2) stem x1,round(100)    (将x1除以100后再做x1的茎叶图) 直方图 采用auto数据库 histogram mpg, discrete frequency normal xlabel(1(1)5) (discrete表示变量不连续,frequency表示显示频数,normal加入正太分布曲线,xlabel设定x轴,1和5为极端值,(1)为单位) histogram price, fraction norm (fraction表示y轴显示小数,除了frequency和fraction这两个选择之外,该命令可替换为“percent”百分比,和“density”密度;未加上discrete就表示将price当作连续变量来绘图) histogram price, percent by(foreign) (按照变量“foreign”的分类,将不同类样本的“price”绘制出来,两个图分左右排布) histogram mpg, discrete by(foreign, col(1)) (按照变量“foreign”的分类,将不同类样本的“mpg”绘制出来,两个图分上下排布) histogram mpg, discrete percent by(foreign, total) norm (按照变量“foreign”的分类,将不同类样本的“mpg”绘制出来,同时绘出样本整体的“总”直方图) 二变量图: graph twoway lfit price weight || scatter price weight (作出price和weight的回归线图——“lfit”,然后与price和weight的散点图相叠加) twoway scatter price weight,mlabel(make) (做price和weight的散点图,并在每个点上标注“make”,即厂商的取值) twoway scatter price weight || lfit price weight,by(foreign) (按照变量foreign的分类,分别对不同类样本的price和weight做散点图和回归线图的叠加,两图呈左右分布) twoway scatter price weight || lfit price weight,by(foreign,col(1)) (按照变量foreign的分类,分别对不同类样本的price和weight做散点图和回归线图的叠加,两图呈上下分布) twoway scatter price weight [fweight= displacement],msymbol(oh) (画出price和weight的散点图,“msybol(oh)”表示每个点均为中空的圆圈,[fweight= displacement]表示每个点的大小与displacement的取值大小成比例) twoway connected y1 time,yaxis(1) || y2 time,yaxis(2) (画出y1和y2这两个变量的时间点线图,并将它们叠加在一个图中,左边“yaxis(1)”为y1的度量,右边“yaxis(2)”为y2的) twoway line y1 time,yaxis(1) || y2 time,yaxis(2) (与上图基本相同,就是没有点,只显示曲线) graph twoway scatter var1 var4 || scatter var2 var4 || scatter var3 var4 (做三个点图的叠加) graph twoway line var1 var4 || line var2 var4 || line var3 var4 (做三个线图的叠加) graph twoway connected var1 var4 || connected var2 var4 || connected var3 var4 (叠加三个点线相连图) 更多变量: graph matrix a b c y (画出一个散点图矩阵,显示各变量之间所有可能的两两相互散点图) graph matrix a b c d,half (生成散点图矩阵,只显示下半部分的三角形区域) 用auto数据集: graph matrix price mpg weight length,half by(  foreign,total col(1) ) (根据foreign变量的不同类型绘制price等四个变量的散点图矩阵,要求绘出总图,并上下排列】=具) 其他图形: graph box y,over(x) yline(.22) (对应x的每一个取值构建y的箱型图,并在y轴的0.22处划一条水平线) graph bar (mean) y,over(x) 对应x的每一个取值,显示y的平均数的条形图。括号中的“mean”也可换成median、sum、sd、p25、p75等 graph bar a1 a2,over(b) stack (对应在b的每一个取值,显示a1和a2的条形图,a1和a2是叠放成一根条形柱。若不写入“stack”,则a1和a2显示为两个并排的条形柱) graph dot (median)y,over(x) (画点图,沿着水平刻度,在x的每一个取值水平所对应的y的中位数上打点) qnorm x (画出一幅分位-正态标绘图) rchart a1 a2 a2 (画出质量控制R图,显示a1到a3的取值范围)   简单统计量的计算: ameans x (计算变量x的算术平均值、几何平均值和简单调和平均值,均显示样本量和置信区间) mean var1 [pweight = var2] (求取分组数据的平均值和标准误,var1为各组的赋值,var2为每组的频数) summarize y x1 x2,detail (可以获得各个变量的百分比数、最大最小值、样本量、平均数、标准差、方差、峰度、偏度) ***注意*** stata中summarize所计算出来的峰度skewness和偏度kurtosis有问题,与ECELL和SPSS有较大差异,建议不采用stata的结果。 summarize var1 [aweight = var2], detail (求取分组数据的统计量,var1为各组的赋值,var2为每组的频数) tabstat X1,stats(mean n q max min sd var cv) (计算变量X1的算术平均值、样本量、四分位线、最大最小值、标准差、方差和变异系数) 概率分布的计算: (1)贝努利概率分布测试: webuse quick bitest quick==0.3,detail (假设每次得到成功案例‘1’的概率等于0.3,计算在变量quick所显示的二项分布情况下,各种累计概率和单个概率是多少) bitesti 10,3,0.5,detail (计算当每次成功的概率为0.5时,十次抽样中抽到三次成功案例的概率:低于或高于三次成功的累计概率和恰好三次成功概率) (2)泊松分布概率: display poisson(7,6) .44971106 (计算均值为7,成功案例小于等于6个的泊松概率) display poissonp(7,6) .14900278 (计算均值为7,成功案例恰好等于6个的泊松概率) display poissontail(7,6) .69929172 (计算均值为7,成功案例大于等于6个的泊松概率) (3)超几何分布概率: display hypergeometricp(10,3,4,2) .3 (计算在样本总量为10,成功案例为3的样本总体中,不重置地抽取4个样本,其中恰好有2个为成功案例的概率) display hypergeometric(10,3,4,2) .96666667 (计算在样本总量为10,成功案例为3的样本总体中,不重置地抽取4个样本,其中有小于或等于2个为成功案例的概率) 检验极端值的步骤: 常见命令:tabulate、stem、codebook、summarize、list、histogram、graph box、gragh matrix step1.用codebook、summarize、histogram、graph boxs、graph matrix、stem看检验数据的总体情况: codebook y x1 x2 summarize y x1 x2,detail histogram x1,norm(正态直方图) graph box x1(箱图) graph matrix y x1 x2,half(画出各个变量的两两x-y图) stem x1(做x1的茎叶图) 可以看出数据分布状况,尤其是最大、最小值 step2.用tabulate、list细致寻找极端值 tabulate code if x1==极端值(作出x1等于极端值时code的频数分布表,code表示地区、年份等序列变量,这样便可找出那些地区的数值出现了错误) list code if x1==极端值(直接列出x1等于极端值时code的值,当x1的错误过多时,不建议使用该命令) list in -20/l(l表示last one,-20表示倒数第20个样本,该命令列出了从倒数第20个到倒数第一个样本的各变量值) step3.用replace命令替换极端值 replace x1=? if x1==极端值 去除极端值: keep if y<1000 drop if y>1000 对数据排序: sort x gsort +x (对数据按x进行升序排列) gsort -x (对数据按x进行降序排列) gsort -x, generate(id) mfirst (对数据按x进行降序排列,缺失值排最前,生成反映位次的变量id) 对变量进行排序: order y x3 x1 x2 (将变量按照y、x3、x1、x2的顺序排列) 生成新变量: gen logx1=log(x1)(得出x1的对数) gen x1`=exp(logx1)(将logx1反对数化) gen r61_100=1 if rank>=61&rank<=100(若rank在61与100之间,则新变量r61_100的取值为1,其他为缺失值) replace r61_100 if r61_100!=1(“!=”表示不等于,若r61_100取值不为1,则将r61_100替换为0,就是将上式中的缺失值替换为0) gen abs(x)(取x的绝对值) gen ceil(x)(取大于或等于x的最小整数) gen trunc(x)(取x的整数部分) gen round(x)(对x进行四舍五入) gen round(x,y)(以y为单位,对x进行四舍五入) gen sqrt(x)(取x的平方根) gen mod(x,y)(取x/y的余数) gen reldif(x,y)(取x与y的相对差异,即|x-y|/(|y|+1)) gen logit(x)(取ln[x/(1-x)]) gen x=autocode(x,n,xmin,xmax)(将x的值域,即xmax-xmin,分为等距的n份) gen x=cond(x1>x2,x1,x2)(若x1>x2成立,则取x1,若x1>x2不成立,则取x2) sort x gen gx=group(n)(将经过排序的变量x分为尽量等规模的n个组) egen zx1=std(x1)(得出x1的标准值,就是用(x1-avgx1)/sdx1) egen zx1=std(x1),m(0) s(1)(得出x1的标准分,标准分的平均值为0,标准差为1) egen sdx1=sd(x1)(得出x1的标准差) egen meanx1=mean(x1)(得出x1的平均值) egen maxx1=max(x1)(最大值) egen minx1=min(x1)(最小值) egen medx1=med(x1)(中数) egen modex1=mode(x1)(众数) egen totalx1=total(x1)(得出x1的总数) egen rowsd=sd(x1 x2 x3)(得出x1、x2和x3联合的标准差) egen rowmean=mean(x1 x2 x3)(得出x1、x2和x3联合的平均值) egen rowmax=max(x1 x2 x3)(联合最大值) egen rowmin=min(x1 x2 x3)(联合最小值) egen rowmed=med(x1 x2 x3)(联合中数) egen rowmode=mode(x1 x2 x3) (联合众数) egen rowtotal=total(x1 x2 x3)(联合总数) egen xrank=rank(x)(在不改变变量x各个值排序的情况下,获得反映x值大小排序的xrank) 数据计算器display命令: display x[12](显示x的第十二个观察值) display chi2(n,x)(自由度为n的累计卡方分布) display chi2tail(n,x)(自由度为n的反向累计卡方分布,chi2tail(n,x)=1-chi2(n,x)) display invchi2(n,p)(卡方分布的逆运算,若chi2(n,x)=p,那么invchi2(n,p)=x) display invchi2tail(n,p)(chi2tail的逆运算) display F(n1,n2,f)(分子、分母自由度分别为n1和n2的累计F分布) display Ftail(n1,n2,f)(分子、分母自由度分别为n1和n2的反向累计F分布) display invF(n1,n2,P)(F分布的逆运算,若F(n1,n2,f)=p,那么invF(n1,n2,p)=f) display invFtail(n1,n2,p)(Ftail的逆运算) display tden(n,t)(自由度为n的t分布) display ttail(n,t)(自由度为n的反向累计t分布) display invttail(n,p)(ttail的逆运算)   给数据库和变量做标记: label data "~~~"(对现用的数据库做标记,"~~~"就是标记,可自行填写) label variable x "~~~"(对变量x做标记) label values x label1(赋予变量x一组标签:label1) label define label1 1 "a1" 2 "a2"(定义标签的具体内容:当x=1时,标记为a1,当x=2时,标记为a2) 频数表: tabulate x1,sort tab1 x1-x7,sort(做x1到x7的频数表,并按照频数以降序显示行) table c1,c(n x1 mean x1 sd x1)(在分类变量c1的不同水平上列出x1的样本量和平均值) 二维交互表: auto数据库: table rep78 foreign, c(n mpg mean mpg sd mpg median mpg) center row col (rep78,foreign均为分类变量,rep78为行变量,foreign为列变量,center表示结果显示在单元格中间,row表示计算行变量整体的统计量,col表示计算列变量整体的统计量) tabulate x1 x2,all (做x1和x2的二维交互表,要求显示独立性检验chi2、似然比卡方独立性检验lrchi2、对定序变量适用的等级相关系数gamma和taub、以及对名义变量适用的V) tabulate x1 x2,column chi2(做x1和x2的二维交互表,要求显示列百分比和行变量和列变量的独立性检验——零假设为变量之间独立无统计关系) tab2 x1-x7,all nofreq(对x1到x7这七个变量两两地做二维交互表,不显示频数:nofreq) 三维交互表: by x3,sort:tabulate x1 x2,nofreq col chi2(同时进行x3的每一个取值内的x1和x2的二维交互表,不显示频数、显示列百分比和独立性检验) 四维交互表: table x1 x2 x3,c(ferq mean x1 mean x2 mean x3) by(x4) tabstat X1 X2,by(X3) stats(mean n q max min sd var cv) col(stats) tabstat X1 X2,by(X3) stats(mean range q sd var cv p5 p95 median),[aw=X4](以X4为权重求X1、X2的均值,标准差、方差等) ttest X1=1 count if X1==0 count if X1>=0 gen X2=1 if X1>=0 corr x1 x2 x3(做x1、x2、x3的相关系数表) swilk x1 x2 x3(用Shapiro-Wilk W test对x1、x2、x3进行正太性分析) sktest x1 x2 x3(对x1、x2、x3进行正太性分析,可以求出峰度和偏度) ttest x1=x2(对x1、x2的均值是否相等进行T检验) ttest x1,by(x2) unequal(按x2的分组方式对x1进行T检验,假设方差不齐性) sdtest x1=x2(方差齐性检验) sdtest x1,by(x2)(按x2的分组方式对x1进行方差齐性检验) 聚类分析: cluster kmeans y x1 x2 x3, k(3) ——依据y、x1、x2、x3,将样本分为n类,聚类的核为随机选取 cluster kmeans y x1 x2 x3, k(3) measure(L1) start(everykth) ——"start"用于确定聚类的核,"everykth"表示将通过构造三组样本获得聚类核:构造方法为将样本id为1、1+3、1+3×2、1+3×3……分为一组、将样本id为2、2+3、2+3×2、2+3×3……分为第二组,以此类推,将这三组的均值作为聚类的核;"measure"用于计算相似性和相异性的方法,"L1"表示采用欧式距离的绝对值,也直接可采用欧式距离(L2)和欧式距离的平方(L2squared)。PS:这个方法所得的结果与SPSS所得结果相同。 sort c1 c2(对c1和c2两个分类变量排序) by c1 c2:reg y x1 x2 x3(在c1、c2的各个水平上分别进行回归) bysort c1 c2:reg y x1 x2 x3 if c3=1(逗号前面相当于将上面两步骤合一,既排序又回归,逗号后面的“if c3=1”表示只有在c3=1的情况下才进行回归) stepwise, pr(.2): reg y x1 x2 x3(使用Backward selection,去除P值大于0.2时变量) stepwise, pe(.2): reg y x1 x2 x3(使用forward selection,去除P值小于0.2时变量) stepwise, pr(.2) pe(.01):reg y x1 x2 x3(使用backward-stepwise selection,取P值在0.01和0.2之间的变量) stepwise, pe(.2) forward: reg y x1 x2 x3(使用forward-stepwise selection) reg y x1 x2 x3 predict Yhat,xb predict u,resid predict ustd,stdr(获得残差的标准误) predict std,stdp(获得y估计值的标准误) predict stdf,stdf(获得y预测值的标准误) predict e,e(1,12)(获得y在1到12之间的估计值) predict p,pr(1,12)(获得y在1到12之间的概率) predict rstu,rstudent(获得student的t值) predict lerg,leverage(获得杠杆值) predict ckd,cooksd(获得cooksd) reg y x1 x2 x3 c1 c2 adjust x1 x2 x3,se(使得变量x1、x2和x3等于其均值,求y的预测值和标准误) adjust x1 x2 x3,stdf ci(使得变量x1、x2和x3等于其均值,求y的预测值,预测标准误和置信区间) adjust x1 x2,by(c1) se ci(控制变量x1、x2,亦即取它们的均值,在分类变量c1的不同水平上求y预测值,标准误和置信区间) adjust x1 x2 x3,by(c1) stdf ci(控制变量x1、x2、x3,亦即取它们的均值,在分类变量c1的不同水平上求y预测值,预测标准误和置信区间) adjust x1 x2,by(c1 c2) se ci(控制变量x1、x2,在分类变量c1、c2的不同水平上求y的预测值,标准误和置信区间) adjust x1 x2 x3,by(c1 c2) stdf ci(控制变量x1、x2、x3,在分类变量c1、c2的不同水平上求y的预测值,预测标准误和置信区间) adjust x1=a x2=b x3=c,se ci(当x1=a、x2=b、x3=c时,求y的预测值、标准误和置信区间) adjust x1=a x2=b x3=c,by(c1) se ci(当x1=a、x2=b、x3=c时,在分类变量c1的不同水平上,求y的预测值、标准误和置信区间) adjust x1=a x2=b c1=1,by(c1) se ci(当x1=a、x2=b,并假设所有的样本均为c1=1,求在分类变量c1的不同水平上,因为变量x3的均值不同,而导致的y的不同的预测值……) mvreg Y1 Y2 ……: X1 X2 X3……(多元回归) mvreg y1 y2 y3: x1 x3 x3(多元回归分析,y1 y2 y3为因变量,x1 x3 x3为自变量) 以下命令只有在进行了mvreg之后才能进行 test [y1](测试对y1的回归系数联合为0) test [y1]: x1 x2(测试对y1的回归中x1、x2的系数为0) test x1 x2 x3(测试在所有的回归中,x1、x2、x3的系数均为0) test [y1=y2](对y1的回归和对y2的回归系数相等) test [y1=y2]: x1 x2 x3, mtest(对y1和y2的回归中,分别测试x1、x2、x3的系数是否相等,若没有mtest这个命令,则测试他们的联和统计) test [y1=y2=y3](三个回归的系数是否相等,可加mtest以分别测试) test [y1=y2=y3]: x1 x2 (测试三个回归中的x1、x2是否相等,可加mtest) est命令的用法: (1)储存回归结果: reg y x1 x2 x3(不限于reg,也可储存ivreg、mvreg、reg3) est store A (2)重现回归结果: est replay A (3)对回归结果进行进一步分析 est for A:sum(对A回归结果中的各个变量运行sum命令) 异方差问题: 获得稳健性标准误 reg y x1 x2 x3 if c1==1(当分类变量c1=1时,进行y和诸x的回归) reg y x1 x2 x3,robust(回归后显示各个自变量的异方差-稳健性标准误) estat vif(回归之后获得VIF) estat hettest,mtest(异方差检验) 异方差检验的套路: (1)Breusch-pagan法: reg y x1 x2 x3 predict u,resid gen usq=u^2 reg usq x1 x2 x3 求F值 display R/(1-R)*n2/n1(n1表示分子除数,n2表示分母除数) display Ftail(……) 求LM值 display R*n(n表示总样本量) display chi2tail(……) (2)white法: reg y x1 x2 x3 predict u,resid gen usq=u^2 predict y gen ysq=y^2 reg usq y ysq 求F值 display R/(1-R)*n2/n1(n1表示分子除数,n2表示分母除数) display Ftail(……) 求LM值 display R*n(n表示总样本量) display chi2tail(……) (3)必要补充 F值和LM值转换为P值的命令: display Ftail(n1,n2,a)(利用F值求p值,n1表示分子除数,n2表示分母除数,a为F值) display chi2tail(n3,b)(利用LM值求p值,n3表示自由度的损失量,一般等于n1,b为LM值) 异方差的纠正——WLS(weighted least square estimator) (1)基本思路: reg y x1 x2 x3 [aw=x1](将x1作为异方差的来源,对方程进行修正) 上式相当于: reg y/(x1^0.5) 1/(x1^0.5) x1/(x1^0.5) x2/(x1^0.5) x3/(x1^0.5),noconstant (2)纠正异方差的常用套路(构造h值) reg y x1 x2 x3 predict u,resid gen usq=u^2 gen logusq=log(usq) reg logusq x1 x2 x3 predict g gen h=exp(g) reg y x1 x2 x3 [aw=1/h] 异方差hausman检验: reg y x1 x2 x3 est store A(将上述回归结果储存到A中) reg y x1 x2 x3 [aw=1/h] est store B hausman A B 当因变量为对数形式时(log(y))如何预测y reg logy x1 x2 x3 predict k gen m=exp(k) reg y m,noconstant m的系数为i y的预测值=i×exp(k) 方差分析: 一元方差分析 anova y g1 / g1|g2 /(g*表示不同分类变量,计算g1和交互项/ g1|g2 /这两种分类的y值是否存在组内差异) anova y d1 d2 d1*d2(d*表示虚拟变量,计算d1、d2和d1*d2的这三种分类的y值是否有组内差异) anova y d1 d2 x1 d2*x1, continuous(x1)(x*表示连续的控制变量) 多元方差分析 webuse jaw manova y1 y2 y3 = gender fracture gender*fracture(按性别、是否骨折及二者的交互项对y1、y2和y3进行方差分析) manova y1 = gender fracture gender*fracture(相当于一元方差分析,以y1为因变量) ———————————— webuse nobetween gen mycons = 1 manova test1 test2 test3 = mycons, noconstant mat c = (1,0,-1 \ 0,1,-1) manovatest mycons, ytransform(c) 进行多元回归的方法:                    多元回归分析:(与mvreg相同) foreach vname in y1 y2 y3 {    (确定y变量组vname) reg `vname' x1 x2 x3           (将y变量组中的各个变量与诸x变量进行回归分析,注意vname的标点符号) } 上式等价于: mvreg y1 y2 y3 = x1 x2 x3 reg3命令: (1)简单用法: reg3 (y1 = x1 x2 x3) (y2 = x1 x3 x4) (y3 = x1 x2 x5) 测试y1 coefs = 0 test [y1] 测试不同回归中相同变量的系数: test [y1=y2=y3], common test ([y1=y2]) ([y1=y3]), common constant(constant表示包含截距项) (2)用reg3进行2SLS reg3 (y1 = y2 x1 x2) (y2 = y1 x4),2sls (2)用reg3进行OLS reg3 (y1 = y2 x1 x2) (y2 = y1 x4),ols 对两个回归结果进行hausman检验: reg3 (y1=x1 x2 x3)(y2=y1 x4),2sls est store twosls reg3 (y1=x1 x2 x3)(y2=y1 x4),ols est store ols hausman twosls ols,equations(1:1)(对两次回归中的方程1,即“y1=x1 x2 x3”进行hausman检验) hausman twosls ols,equations(2:2)(对两次回归中的方程2,即“y2=y1 x4”进行hausman检验) hausman twosls ols,alleqs(对所有方程一起进行检验) 检验忽略变量(模型的RESET): reg y x1 x2 x3 estat ovtest 滞后变量的制取 对变量y滞后一期: gen y_l1=y[_n-1] 滞后两期: gen y_l2=y[_n-2] 以此类推。 制取样本序号: gen id=_n 获得样本总量: gen id=_N 时间序列回归: 回归元严格外生时AR(1)序列相关的检验 reg y x1 x2 predict u,resid gen u_1=u[_n-1] reg u u_1,noconstant 回归之后,u_1的序数如果不异于零,则该序列不相关 用Durbin-Watson Statistics检验序列相关: tsset year                @(对时间序列回归中代表时间的变量进行定义)@ reg y x1 x2 dwstat                    @(求出时间序列回归的DW值)@ durbina                   @(对该回归是否具有序列相关进行检验,H0为无序列相关,可根据chi2值求出P值)@ durbina,small             @(small可以根据F值求出P值,以代替chi2值)@ durbina,force             @(让检验能在robust、neway之后进行)@ durbina,small l
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服