资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,第,4,讲数列求和,1/34,考纲要求,考点分布,考情风向标,1.掌握等差数列、等比数列求和公式.,2.了解普通数列求和几个方法,新课标第17题(2)考查裂项相消法数列求和;,纲领第17题考查裂项相消法数列求和;,新课标第17题(2)考查错位相减法数列求和;,北京第15题(2)考查分组法数列求和,山东第19题(2)考查错位相减法数列求和;,新课标第17题(2)考查等比数列求和,新课标第15题及新课标第17题(2)考查裂项相消法数列求和,从近几年高考试题来看,对等差、等比数列求和,以考查公式为主;对非等差、非等比数列求和,主要考查分组法、裂项相消法、错位相减法等.题型现有选择题、填空题,又有解答题,属较难题目,2/34,数列求和,3/34,B,4/34,A,5/34,3.,若数列,a,n,满足,a,1,1,,,a,n,1,2,a,n,(,n,N,*,),,则,a,5,_,,,前 8 项和,S,8,_.(用数字作答),为,10,,则项数,n,_.,16,255,120,6/34,考点,1,公式或分组法求和,例,1,:,(,年北京,),已知,a,n,是等差数列,,b,n,是等比数列,且,b,2,3,,,b,3,9,,,a,1,b,1,,,a,14,b,4,.,(1),求,a,n,通项公式;,(2),设,c,n,a,n,b,n,,求数列,c,n,前,n,项和,.,7/34,设等差数列,a,n,公差为,d,.,因为,a,1,b,1,1,,,a,14,b,4,27,,,所以,1,13,d,27,,即,d,2.,所以,a,n,2,n,1(,n,N,*,).,8/34,【,规律方法,】,若一个数列是由等比数列和等差数列组成,,则求和时,可采取分组求和,即先分别求和,再将各部分合并,.,(2),由,(1),知,,a,n,2,n,1,,,b,n,3,n,1,.,所以,c,n,a,n,b,n,2,n,1,3,n,1,.,从而数列,c,n,前,n,项和,S,n,1,3,(2,n,1),1,3,3,n,1,9/34,【,互动探究,】,1.,(,年福建,),在等差数列,a,n,中,,a,2,4,,,a,4,a,7,15.,(1),求数列,a,n,通项公式;,10/34,(2),由,(1),,可得,b,n,2,n,n,.,所以,b,1,b,2,b,3,b,10,(2,1),(2,2,2),(2,3,3),(2,10,10),(2,2,2,2,3,2,10,),(1,2,3,10),(2,11,2),55,2,11,53,2101.,11/34,考点,2,裂项相消法求和,解:,(1),因为,a,1,3,a,2,(2,n,1),a,n,2,n,,,故当,n,2,时,,,a,1,3,a,2,(2,n,3),a,n,1,2(,n,1),,,两式相减,得,(2,n,1),a,n,2.,12/34,13/34,【,规律方法,】,在应用裂项相消法时,要注意消项规律具,有对称性,即前面剩多少项则后面也剩多少项,.,常见拆项公,14/34,【,互动探究,】,15/34,16/34,17/34,18/34,考点,3,错位相减法求和,例,3,:,(,年天津,),已知,a,n,为等差数列,前,n,项和为,S,n,(,n,N,*,),,,b,n,是首项为,2,等比数列,且公比大于,0,,,b,2,b,3,12,,,b,3,a,4,2,a,1,,,S,11,11,b,4,.,(1),求,a,n,和,b,n,通项公式;,(2),求数列,a,2,n,b,n,前,n,项和,(,n,N,*,).,19/34,解:,(1),设等差数列,a,n,公差为,d,,等比数列,b,n,公比为,q,.,由已知,b,2,b,3,12,,得,b,1,(,q,q,2,),12.,因为,b,1,2,,所以,q,2,q,6,0.,又因为,q,0,,解得,q,2.,所以,b,n,2,n,.,由,b,3,a,4,2,a,1,,可得,3,d,a,1,8.,由,S,11,11,b,4,,可得,a,1,5,d,16.,联立,,解得,a,1,1,,,d,3.,由此可得,a,n,3,n,2.,所以,a,n,通项公式为,a,n,3,n,2,,,b,n,通项公式为,b,n,2,n,.,20/34,(2),设数列,a,2,n,b,n,前,n,项和为,T,n,,,由,a,2,n,6,n,2,,,得,T,n,4,2,10,2,2,16,2,3,(6,n,2),2,n,,,2,T,n,4,2,2,10,2,3,16,2,4,(6,n,8),2,n,(6,n,2),2,n,1,,,上述两式相减,得,T,n,4,2,6,2,2,6,2,3,6,2,n,(6,n,2),2,n,1,21/34,(3,n,4)2,n,2,16.,所以,T,n,(3,n,4)2,n,2,16.,所以数列,a,2,n,b,n,前,n,项和为,(3,n,4)2,n,2,16.,【,规律方法,】,(1),普通地,假如数列,a,n,是等差数列,,b,n,是等比数列,那么求数列,a,n,b,n,前,n,项和时,可采取错位相减法,普通是和式两边同乘等比数列,b,n,公比,然后作差求解,.(2),在写出,“,S,n,”,与,“,qS,n,”,表示式时,应尤其注意将两式,“,错项对齐,”,方便下一步准确写出,“,S,n,qS,n,”,表示式,.,22/34,【,互动探究,】,23/34,24/34,25/34,思想与方法,放缩法在数列中应用,26/34,27/34,28/34,29/34,【,规律方法,】,本题要利用放缩技巧结构裂项相消法求和,.,本题关键在于能否看出条件方程能十字相乘求出,S,n,,然后利用,a,n,S,n,S,n,1,求,a,n,,请记住,他山之石,能够攻玉!,30/34,【,互动探究,】,31/34,假设存在符合条件,k,:,若,k,为偶数,则,k,5,为奇数,.,有,f,(,k,5),k,3,,,f,(,k,),2,k,2.,若,f,(,k,5),2,f,(,k,),2,,则,k,3,4,k,6,k,3,与,k,为偶数矛,盾,.,不符舍去,.,32/34,若,k,为奇数,则,k,5 为偶数.,有,f,(,k,5)2,k,8,,f,(,k,),k,2.,2,k,82(,k,2)2,86,则这么,k,也不存在.,总而言之,不存在符合条件,k,N,*,,使得,f,(,k,5),2,f,(,k,),2.,(3),证实:,P,n,(,n,2,2,n,2),,,P,1,(,1,0),,,33/34,34/34,
展开阅读全文