资源描述
第一篇求准提速,基础小题不失分,第,5,练不等式,1/52,明考情,不等式作为数学解题主要工具,在高考中一直是命题热点,多以选择题形式展现,.,知考向,1.,不等关系与不等式性质,.,2.,不等式解法,.,3.,基本不等式,.,4.,简单线性规划问题,.,2/52,研透考点,关键考点突破练,栏目索引,明辨是非,易错易混专题练,演练模拟,高考押题冲刺练,3/52,研透考点,关键考点突破练,考点一不等关系与不等式性质,关键点重组,不等式惯用性质,(1),假如,a,b,0,,,c,d,0,,那么,ac,bd,.,(2),假如,a,b,0,,那么,a,n,b,n,(,n,N,,,n,2).,4/52,1,2,3,4,5,答案,解析,1.,设,0,a,b,b,成立充分无须要条件是,A.,a,b,1 B.,a,b,1,C.,a,2,b,2,D.,a,3,b,3,解析,由,a,b,1,,得,a,b,1,b,,即,a,b,;,而由,a,b,不能得出,a,b,1.,所以,使,a,b,成立充分无须要条件是,a,b,1.,6/52,3.(,北京,),已知,x,,,y,R,,且,x,y,0,,则,1,2,3,4,5,函数,y,sin,x,在,(0,,,),上不是单调函数,,B,错;,答案,解析,ln,x,ln,y,ln,xy,,当,x,y,0,时,,xy,不一定大于,1,,即不一定有,ln,xy,0,,,D,错,.,7/52,1,2,3,4,5,4.(,全国,),若,a,b,1,,,0,c,1,,则,A.,a,c,b,c,B.,ab,c,ba,c,C.,a,log,b,c,b,log,a,c,D.log,a,c,log,b,c,答案,解析,8/52,解析,对,A,:因为,0,c,b,1,a,c,b,c,,故,A,错;,对,B,:因为,1,c,1,b,1,a,c,1,b,c,1,ba,c,ab,c,,故,B,错;,1,2,3,4,5,9/52,1,2,3,4,5,10/52,1,2,3,4,5,5.,若,x,y,,,a,b,,则在:,a,x,b,y,;,a,x,b,y,;,ax,by,;,这四个式子中,恒成立全部不等式序号是,_.,答案,11/52,考点二不等式解法,方法技巧,(1),解一元二次不等式步骤,一化,(,二次项系数化为正,),,二判,(,看判别式,),,三解,(,解对应一元二次方程,),,四写,(,依据,“,大于取两边,小于取中间,”,写出不等式解集,).,(2),可化为,0(,或,0),型分式不等式,转化为一元二次不等式求解,.,(3),指数不等式、对数不等式可利用函数单调性求解,.,12/52,6.,若,ax,2,bx,c,0,解集为,x,|,x,2,或,x,4,,则对于函数,f,(,x,),ax,2,bx,c,应有,A.,f,(5),f,(2),f,(,1)B.,f,(5),f,(,1),f,(2),C.,f,(,1),f,(2),f,(5)D.,f,(2),f,(,1),f,(5),解析,ax,2,bx,c,0,解集为,x,|,x,2,或,x,4,,,a,0,,,f,(,1),f,(3).,又,函数,f,(,x,),在,1,,,),上是减函数,,f,(5),f,(3),f,(2),,即,f,(5),f,(,1),f,(2).,6,7,8,9,10,答案,解析,13/52,7.,在,R,上定义运算:,x,*,y,x,(1,y,).,若不等式,(,x,y,)*(,x,y,)1,对一切实数,x,恒成立,则实数,y,取值范围是,解析,由题意知,,(,x,y,)*(,x,y,),(,x,y,)1,(,x,y,)1,对一切实数,x,恒成立,,所以,x,2,x,y,2,y,10,对于,x,R,恒成立,.,故,1,2,4,(,1),(,y,2,y,1)0,,,答案,解析,6,7,8,9,10,14/52,8.,若不等式,x,2,2,ax,a,0,对,x,R,恒成立,则关于,t,不等式,a,2,t+,1,1,解为,A.1,t,2 B.,2,t,1,C.,2,t,2 D.,3,t,2,解析,因为不等式,x,2,2,ax,a,0,对,x,R,恒成立,,所以,4,a,2,4,a,0,0,a,1,,,那么关于,t,不等式,a,2,t+,1,1,等价于,2,t,1,t,2,2,t,3,0,,,6,7,8,9,10,答案,解析,15/52,(,,,1,解得,0,x,1,或,x,4,x,a,3,恒成立,x,取值范围是,_.,解析,原不等式可化为,x,2,ax,4,x,a,30,,即,a,(,x,1),x,2,4,x,30,,,令,f,(,a,),a,(,x,1),x,2,4,x,3,,,则函数,f,(,a,),a,(,x,1),x,2,4,x,3,表示直线,,要使,f,(,a,),a,(,x,1),x,2,4,x,30,在,a,0,,,4,上恒成立,,则有,f,(0)0,,,f,(4)0,,即,x,2,4,x,30,且,x,2,10,,,解得,x,3,或,x,1,,即,x,取值范围为,(,,,1),(3,,,).,答案,解析,(,,,1),(3,,,),17/52,考点三基本不等式,关键点重组,基本不等式:,(1),利用基本不等式求最值条件:一正二定三相等,.,(2),求最值时若连续利用两次基本不等式,必须确保两次等号成立条件一致,.,18/52,解析,由,x,2,6,xy,1,0,,可得,x,2,6,xy,1,,,即,x,(,x,6,y,),1.,因为,x,,,y,都是正数,所以,x,6,y,0.,11.,若正数,x,,,y,满足,x,2,6,xy,1,0,,则,x,2,y,最小值是,11,12,13,14,15,答案,解析,19/52,解析,由两圆恰有三条公切线知,,两圆外切,可得,a,2,4,b,2,9,,,当且仅当,a,2,2,b,2,时取等号,.,11,12,13,14,15,答案,解析,20/52,答案,解析,11,12,13,14,15,21/52,11,12,13,14,15,又,a,0,,,b,0,,,22/52,8,11,12,13,14,15,答案,解析,故,2,a,b,最小值为,8.,23/52,1,解析,x,,,y,,,z,是正实数,,当且仅当,x,2,y,时等号成立,此时,z,2,y,2,.,答案,解析,11,12,13,14,15,24/52,考点四简单线性规划问题,方法技巧,(1),求目标函数最值普通步骤:一画二移三求,.,(2),常见目标函数,截距型:,z,ax,by,;,距离型:,z,(,x,a,),2,(,y,b,),2,;,斜率型:,z,.,25/52,解析,依据题意作出可行域,如图阴影部分所表示,,由,z,x,y,,得,y,x,z,.,作出直线,y,x,,并平移该直线,,当直线,y,x,z,过点,A,时,目标函数取得最大值,.,由图知,A,(3,,,0),,,故,z,max,3,0,3.,故选,D.,A.0 B.1 C.2 D.3,16,17,18,19,20,答案,解析,26/52,若,z,ax,y,最大值为,4,,,则直线,y,ax,z,斜率,a,0,,,a,0,,,最优解为点,B,(2,,,0),,即,4,a,2,0,,,a,2.,故选,B.,A.3 B.2 C.,2 D.,3,答案,解析,16,17,18,19,20,27/52,解析,不等式,|,x,|,|3,y,|,6,0,所对应平面区域为一个菱形及其内部,,对角线长分别为,12,,,4,,,所以面积为,12,4,24.,故选,B.,18.(,阜阳二模,),不等式,|,x,|,|3,y,|,6,0,所对应平面区域面积为,A.12 B.24 C.36 D.48,答案,解析,16,17,18,19,20,28/52,答案,解析,A.1,,,5 B.2,,,6,C.3,,,11 D.3,,,10,16,17,18,19,20,29/52,16,17,18,19,20,30/52,答案,解析,16,17,18,19,20,31/52,解析,画出可行域如图所表示,(,阴影部分,),,,由题意知,,z,(,x,1),2,(,y,1),2,,,过点,(,1,,,1),作直线,y,x,垂线,垂足为原点,O,,,点,(,1,,,1),与点,O,之间距离平方恰好为,2,,,说明点,O,一定在可行域内,,16,17,18,19,20,32/52,明辨是非,易错易混专题练,1.,已知当,x,0,恒成立,则,m,取值范围为,解析,由,2,x,2,mx,10,,得,mx,0,,,b,0),,当且仅当,a,b,时取等号,.,注意公式变形使用和等号成立条件,.,(3),了解线性规划问题中目标函数实际意义,.,38/52,演练模拟,高考押题冲刺练,1.,若,x,y,0,,,m,n,,则以下不等式正确是,A.,xm,ym,B.,x,m,y,n,答案,1,2,3,4,5,6,7,8,9,10,11,12,39/52,2.(,浙江,),已知,a,,,b,0,,且,a,1,,,b,1,,若,log,a,b,1,,则,A.(,a,1)(,b,1),0,B.(,a,1)(,a,b,),0,C.(,b,1)(,b,a,),0,D.(,b,1)(,b,a,),0,1,2,3,4,5,6,7,8,9,10,11,12,答案,解析,解析,取,a,2,,,b,4,,则,(,a,1)(,b,1),3,0,,排除,A,;,则,(,a,1)(,a,b,),2,0,,排除,B,;,(,b,1)(,b,a,),6,0,,排除,C,,故选,D.,40/52,解析,当,k,0,时,显然成立,,1,2,3,4,5,6,7,8,9,10,11,12,答案,解析,A.(,3,,,0)B.,3,,,0),C.,3,,,0 D.(,3,,,0,综上,,3,k,0.,41/52,4.,以下函数中,,y,最小值为,4,是,B.,y,log,3,x,4log,x,3,D.,y,e,x,4e,x,答案,1,2,3,4,5,6,7,8,9,10,11,12,42/52,1,2,3,4,5,6,7,8,9,10,11,12,答案,解析,43/52,解析,作可行域如图,,目标函数化为,y,2,x,z,,平移后在点,A,处,z,取得最小值,,1,2,3,4,5,6,7,8,9,10,11,12,答案,解析,44/52,解析,在直角坐标系中作出不等式组所表示可行,域如图中阴影部分,(,包含边界,),所表示,,当目标函数,z,2,x,y,经过可行域中点,B,(1,,,1),时有最大值,3,,,当目标函数,z,2,x,y,经过可行域中点,A,(,a,,,a,),时有最小值,3,a,,,由,3,4,3,a,,得,a,.,1,2,3,4,5,6,7,8,9,10,11,12,答案,解析,45/52,8.,若对任意,x,,,y,R,,不等式,x,2,y,2,xy,3(,x,y,a,),恒成立,则实数,a,取值范围为,A.(,,,1 B.1,,,),C.,1,,,)D.(,,,1,1,2,3,4,5,6,7,8,9,10,11,12,解析,不等式,x,2,y,2,xy,3(,x,y,a,),对任意,x,,,y,R,恒成立等价于不等式,x,2,(,y,3),x,y,2,3,y,3,a,0,对任意,x,,,y,R,恒成立,,所以,(,y,3),2,4(,y,2,3,y,3,a,),3,y,2,6,y,9,12,a,3(,y,1),2,12(1,a,),0,对任意,y,R,恒成立,,所以,1,a,0,,即,a,1,,故选,B.,答案,解析,46/52,解析,函数,f,(,x,),定义域为,(,1,,,1),且在,(,1,,,1),上单调递增,,f,(,x,),f,(,x,),,,1,2,3,4,5,6,7,8,9,10,11,12,答案,解析,47/52,1,2,3,4,5,6,7,8,9,10,11,12,1,答案,解析,48/52,1,2,3,4,5,6,7,8,9,10,11,12,A,(1,,,1).,z,min,3,4,1.,49/52,4,由已知得,a,0,,,b,0,,,1,2,3,4,5,6,7,8,9,10,11,12,答案,解析,50/52,可求出,C,(2,,,0),,,D,(2,,,6).,1,2,3,4,5,6,7,8,9,10,11,12,答案,解析,51/52,本课结束,52/52,
展开阅读全文