资源描述
剖析题型 提炼方法,实验解读,构建知识网络 强化答题语句,探究高考 明确考向,14.2,不等式选讲,第十四章,系列,4,选讲,1/74,基础知识自主学习,课时作业,题型分类深度剖析,内容索引,2/74,基础知识自主学习,3/74,1.,绝对值不等式解法,(1),含绝对值不等式,|,x,|,a,解集,知识梳理,不等式,a,0,a,0,a,0,|,x,|,a,(,,,a,),(,a,,,),(,,,0),(0,,,),R,(2)|,ax,b,|,c,(,c,0),和,|,ax,b,|,c,(,c,0),型不等式解法,|,ax,b,|,c,;,|,ax,b,|,c,.,(,a,,,a,),c,ax,b,c,ax,b,c,或,ax,b,c,4/74,(3)|,x,a,|,|,x,b,|,c,(,c,0),和,|,x,a,|,|,x,b,|,c,(,c,0),型不等式解法,利用绝对值不等式几何意义求解,表达了数形结合思想;,利用,“,零点分段法,”,求解,表达了分类讨论思想;,经过结构函数,利用函数图象求解,表达了函数与方程思想,.,2.,含有绝对值不等式性质,(1),假如,a,,,b,是实数,则,|,a,b,|,,当且仅当,_,时,等号成立,.,(2),假如,a,,,b,,,c,是实数,那么,,当且仅当,时,等号成立,.,|,a,|,|,b,|,|,a,|,|,b,|,ab,0,|,a,c,|,|,a,b,|,|,b,c,|,(,a,b,)(,b,c,),0,5/74,3.,不等式证实方法,(1),比较法,作差比较法,知道,a,b,a,b,0,,,a,b,a,b,b,,只要证实,_,即可,这种方法称为作差比较法,.,作商比较法,a,b,0,6/74,(2),综正当,从已知条件出发,利用不等式相关性质或定理,经过推理论证,最终推导出所要证实不等式成立,这种证实方法叫做综正当,即,“,由因导果,”,方法,.,(3),分析法,从待证不等式出发,逐步寻求使它成立充分条件,直到将待证不等式归结为一个已成立不等式,(,已知条件、定理等,),,从而得出要证不等式成立,这种证实方法叫做分析法,即,“,执果索因,”,方法,.,7/74,题组一思索辨析,1.,判断以下结论是否正确,(,请在括号中打,“”,或,“”,),(1),若,|,x,|,c,解集为,R,,则,c,0.(,),(2),不等式,|,x,1|,|,x,2|,b,0,时等号成立,.(,),(4),对,|,a,|,|,b,|,|,a,b,|,当且仅当,|,a,|,|,b,|,时等号成立,.(,),(5),对,|,a,b,|,|,a,|,|,b,|,当且仅当,ab,0,时等号成立,.(,),基础自测,1,2,3,4,5,6,8/74,题组二教材改编,2.,P20T7,不等式,3,|5,2,x,|9,解集为,A.,2,1),4,7)B.(,2,1,(4,7,C.(,2,,,1,4,7)D.(,2,1,4,7),答案,解析,1,2,3,4,5,6,9/74,解答,解,当,x,1,时,原不等式可化为,1,x,(5,x,)2,,,42,,不等式恒成立,,x,1,;,当,1,x,5,时,原不等式可化为,x,1,(5,x,)2,,,x,4,,,1,x,4,;,当,x,5,时,原不等式可化为,x,1,(,x,5)2,,该不等式不成立,.,综上,原不等式解集为,(,,,4).,1,2,3,4,5,6,3.,P20T8,求不等式,|,x,1|,|,x,5|2,解集,.,10/74,题组三易错自纠,4.,若函数,f,(,x,),|,x,1|,2|,x,a,|,最小值为,5,,则实数,a,_.,1,2,3,4,5,6,4,或,6,答案,解析,11/74,解析,方法一,当,a,1,时,,f,(,x,),3|,x,1|,,,f,(,x,),min,0,,不符合题意;,1,2,3,4,5,6,f,(,x,),min,f,(,a,),a,1,5,,,a,6,成立;,f,(,x,),min,f,(,a,),a,1,5,,,a,4,成立,.,综上,,a,4,或,a,6.,12/74,方法二,当,a,1,时,,f,(,x,),min,0,,不符合题意;,当,a,1,时,,f,(,x,),min,f,(,a,),|,a,1|,5,,,a,4,或,a,6.,1,2,3,4,5,6,13/74,1,2,3,4,5,6,9,3,2,2,2,9,,,答案,解析,14/74,1,2,3,4,5,6,答案,解析,15/74,1,2,3,4,5,6,解析,设,y,|2,x,1|,|,x,2|,当,x,5,;,16/74,1,2,3,4,5,6,17/74,题型分类深度剖析,18/74,1.(,全国,),已知函数,f,(,x,),x,2,ax,4,,,g,(,x,),|,x,1|,|,x,1|.,(1),当,a,1,时,求不等式,f,(,x,),g,(,x,),解集;,解答,题型一绝对值不等式解法,自主演练,19/74,解,当,a,1,时,不等式,f,(,x,),g,(,x,),等价于,x,2,x,|,x,1|,|,x,1|,4,0.,当,x,1,时,,式化为,x,2,x,4,0,,,20/74,(2),若不等式,f,(,x,),g,(,x,),解集包含,1,1,,求,a,取值范围,.,解答,解,当,x,1,1,时,,g,(,x,),2,,,所以,f,(,x,),g,(,x,),解集包含,1,1,等价于,当,x,1,1,时,,f,(,x,),2.,又,f,(,x,),在,1,1,上最小值必为,f,(,1),与,f,(1),之一,,所以,f,(,1),2,且,f,(1),2,,得,1,a,1.,所以,a,取值范围为,1,1.,21/74,2.,已知函数,f,(,x,),|,x,1|,2|,x,a,|,,,a,0.,(1),当,a,1,时,求不等式,f,(,x,)1,解集;,解答,解,当,a,1,时,,f,(,x,)1,化为,|,x,1|,2|,x,1|,10.,当,x,1,时,不等式化为,x,40,,无解;,当,x,1,时,不等式化为,x,20,,解得,1,x,0,,,即证,a,2,b,2,c,2,2(,ab,bc,ca,),3,,,而,ab,bc,ca,1,,,故需证实,a,2,b,2,c,2,2(,ab,bc,ca,),3(,ab,bc,ca,),,,即证,a,2,b,2,c,2,ab,bc,ca,.,a,2,b,2,c,2,(,当且仅当,a,b,c,时等号成立,),成立,,所以原不等式成立,.,证实,40/74,用综正当证实不等式是,“,由因导果,”,,用分析法证实不等式是,“,执果索因,”,,它们是两种思绪截然相反证实方法,.,综正当往往是分析法逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思绪,用综正当写步骤,由此可见,分析法与综正当相互转化,相互渗透,互为前提,充分利用这一辩证关系,能够增加解题思绪,开阔视野,.,思维升华,41/74,证实,跟踪训练,(,全国,),已知,a,0,,,b,0,,,a,3,b,3,2,,证实:,(1)(,a,b,)(,a,5,b,5,),4,;,证实,(,a,b,)(,a,5,b,5,),a,6,ab,5,a,5,b,b,6,(,a,3,b,3,),2,2,a,3,b,3,ab,(,a,4,b,4,),4,ab,(,a,4,b,4,2,a,2,b,2,),4,ab,(,a,2,b,2,),2,4.,42/74,证实,(2),a,b,2.,证实,因为,(,a,b,),3,a,3,3,a,2,b,3,ab,2,b,3,2,3,ab,(,a,b,),所以,(,a,b,),3,8,,所以,a,b,2.,43/74,课时作业,44/74,基础,保分练,解答,1,2,3,4,5,6,7,8,9,10,1.,解不等式,|,x,1|,|,x,2|,5.,45/74,1,2,3,4,5,6,7,8,9,10,解,方法一,如图,设数轴上与,2,1,对应点分别是,A,,,B,,则不等式解就是数轴上到,A,,,B,两点距离之和大于,5,点所对应实数,.,显然,区间,2,1,不是不等式解集,.,把点,A,向左移动一个单位到点,A,1,,此时,|,A,1,A,|,|,A,1,B,|,1,4,5.,把点,B,向右移动一个单位到点,B,1,,此时,|,B,1,A,|,|,B,1,B,|,5,,故原不等式解集为,(,,,3,2,,,).,46/74,1,2,3,4,5,6,7,8,9,10,方法二,由原不等式,|,x,1|,|,x,2|,5,,,原不等式解集为,(,,,3,2,,,).,方法三,将原不等式转化为,|,x,1|,|,x,2|,5,0.,令,f,(,x,),|,x,1|,|,x,2|,5,,则,47/74,1,2,3,4,5,6,7,8,9,10,作出函数图象,如图所表示,.,由图象可知,当,x,(,,,3,2,,,),时,,y,0,,,原不等式解集为,(,,,3,2,,,).,48/74,解答,1,2,3,4,5,6,7,8,9,10,2.(,烟台二模,),若不等式,log,2,(|,x,1|,|,x,2|,m,),2,恒成立,求实数,m,取值范围,.,解,由题意可知,|,x,1|,|,x,2|,m,4,恒成立,,即,m,(|,x,1|,|,x,2|,4),min,.,又因为,|,x,1|,|,x,2|,4,|(,x,1),(,x,2)|,4,1,,,当且仅当,1,x,2,时等号成立,,所以,m,1.,即实数,m,取值范围为,(,,,1.,49/74,解答,1,2,3,4,5,6,7,8,9,10,即,|4,a,3,b,2|,最大值为,6,,所以,m,|4,a,3,b,2|,max,6.,即实数,m,取值范围为,6,,,).,3.,对于任意实数,a,,,b,,已知,|,a,b,|,1,,,|2,a,1|,1,,且恒有,|4,a,3,b,2|,m,,求实数,m,取值范围,.,解,因为,|,a,b,|,1,,,|2,a,1|,1,,,50/74,证实,1,2,3,4,5,6,7,8,9,10,51/74,1,2,3,4,5,6,7,8,9,10,证实,52/74,1,2,3,4,5,6,7,8,9,10,证实,若,|,a,b,|,|,c,d,|,,则,(,a,b,),2,(,c,d,),2,即,(,a,b,),2,4,ab,(,c,d,),2,4,cd,.,因为,a,b,c,d,,所以,ab,cd,;,因为,a,b,c,d,,所以,ab,cd,,于是,(,a,b,),2,(,a,b,),2,4,ab,(,c,d,),2,4,cd,(,c,d,),2,.,所以,|,a,b,|,|,c,d,|,,即充分性成立,.,53/74,解答,1,2,3,4,5,6,7,8,9,10,5.(,洛阳模拟,),已知关于,x,不等式,|2,x,1|,|,x,1|,log,2,a,(,其中,a,0).,(1),当,a,4,时,求不等式解集;,解,当,a,4,时,不等式为,|2,x,1|,|,x,1|,2.,54/74,解答,1,2,3,4,5,6,7,8,9,10,(2),若不等式有解,求实数,a,取值范围,.,55/74,解答,6.(,沈阳模拟,),设,f,(,x,),|,ax,1|.,(1),若,f,(,x,),2,解集为,6,2,,求实数,a,值;,1,2,3,4,5,6,7,8,9,10,56/74,解答,(2),当,a,2,时,若存在,x,0,R,,使得不等式,f,(2,x,0,1),f,(,x,0,1),7,3,m,成立,求实数,m,取值范围,.,1,2,3,4,5,6,7,8,9,10,57/74,1,2,3,4,5,6,7,8,9,10,58/74,1,2,3,4,5,6,7,8,9,10,59/74,证实,证实,a,b,c,2,,,a,2,b,2,c,2,2,ab,2,bc,2,ca,4,,,2,a,2,2,b,2,2,c,2,4,ab,4,bc,4,ca,8,,,8,2,a,2,2,b,2,2,c,2,4,ab,4,bc,4,ca,6,ab,6,bc,6,ac,,,当且仅当,a,b,c,时取等号,,ab,bc,技能提升练,1,2,3,4,5,6,7,8,9,10,60/74,解答,(2),若,a,,,b,,,c,都小于,1,,求,a,2,b,2,c,2,取值范围,.,1,2,3,4,5,6,7,8,9,10,解,由题意可知,,a,2,b,2,c,2,2,ab,2,bc,2,ca,4,,,4,a,2,b,2,c,2,a,2,b,2,b,2,c,2,a,2,c,2,3(,a,2,b,2,c,2,),,,当且仅当,a,b,c,时取等号,,a,2,b,2,0,a,a,2,.,同理,b,b,2,,,c,c,2,.,a,2,b,2,c,2,a,b,c,2,,,61/74,解答,1,2,3,4,5,6,7,8,9,10,8.,已知函数,f,(,x,),m,|,x,1|,|,x,2|,,,m,R,,且,f,(,x,1),0,解集为,0,1.,(1),求,m,值;,62/74,解,由,f,(,x,1),0,,得,|,x,|,|,x,1|,m,.,|,x,|,|,x,1|,1,恒成立,,若,m,0,,,b,0,且,a,b,1,,,71/74,解答,1,2,3,4,5,6,7,8,9,10,72/74,1,2,3,4,5,6,7,8,9,10,解,对,a,,,b,(0,,,),,,|2,x,1|,|,x,1|,9.,当,x,1,时,不等式化为,2,x,9,,,解得,7,x,1,;,73/74,1,2,3,4,5,6,7,8,9,10,x,取值范围为,x,|,7,x,11.,74/74,
展开阅读全文