收藏 分销(赏)

高考数学复习第六章数列与数学归纳法6.3等比数列及其前n项和市赛课公开课一等奖省名师优质课获奖.pptx

上传人:天**** 文档编号:12627231 上传时间:2025-11-14 格式:PPTX 页数:54 大小:5.91MB 下载积分:14 金币
下载 相关 举报
高考数学复习第六章数列与数学归纳法6.3等比数列及其前n项和市赛课公开课一等奖省名师优质课获奖.pptx_第1页
第1页 / 共54页
高考数学复习第六章数列与数学归纳法6.3等比数列及其前n项和市赛课公开课一等奖省名师优质课获奖.pptx_第2页
第2页 / 共54页


点击查看更多>>
资源描述
,6.3,等比数列及其前,n,项和,1/54,基础知识自主学习,课时训练,题型分类深度剖析,内容索引,2/54,基础知识自主学习,3/54,1.,等比数列定义,普通地,假如一个数列,,那么这个数列叫做等比数列,这个常数叫做等比数列,,通惯用字母,表示,(,q,0).,2.,等比数列通项公式,设等比数列,a,n,首项为,a,1,,公比为,q,,则它通项,a,n,.,3.,等比中项,假如在,a,与,b,中间插入一个数,G,,使,a,,,G,,,b,成等比数列,那么,G,叫做,a,与,b,.,知识梳理,从第,2,项起,每一项与它前一项比等于同一,常数,公比,q,a,1,q,n,1,等比中项,4/54,4.,等比数列惯用性质,(1),通项公式推广:,a,n,a,m,(,n,,,m,N,*,).,(2),若,a,n,为等比数列,且,k,l,m,n,(,k,,,l,,,m,,,n,N,*,),,则,_,.,5.,等比数列前,n,项和公式,等比数列,a,n,公比为,q,(,q,0),,其前,n,项和为,S,n,,,当,q,1,时,,S,n,na,1,;,q,n,m,a,k,a,l,a,m,a,n,5/54,6.,等比数列前,n,项和性质,公比不为,1,等比数列,a,n,前,n,项和为,S,n,,则,S,n,,,S,2,n,S,n,,,S,3,n,S,2,n,仍成等比数列,其公比为,.,q,n,6/54,等比数列,a,n,单调性,知识拓展,7/54,判断以下结论是否正确,(,请在括号中打,“”,或,“”,),(1),满足,a,n,1,qa,n,(,n,N,*,,,q,为常数,),数列,a,n,为等比数列,.(,),(2),G,为,a,,,b,等比中项,G,2,ab,.(,),(3),假如数列,a,n,为等比数列,,b,n,a,2,n,1,a,2,n,,则数列,b,n,也是等比数列,.(,),(4),假如数列,a,n,为等比数列,则数列,ln,a,n,是等差数列,.(,),思索辨析,8/54,考点自测,答案,解析,9/54,答案,解析,2.,设等比数列,a,n,前,n,项和为,S,n,,若,S,2,3,,,S,4,15,,则,S,6,等于,A.31 B.32 C.63 D.64,依据题意知,等比数列,a,n,公比不是,1.,由等比数列性质,得,(,S,4,S,2,),2,S,2,(,S,6,S,4,),,,即,12,2,3,(,S,6,15),,解得,S,6,63.,故选,C.,10/54,3.(,教材改编,),在,9,与,243,中间插入两个数,使它们同这两个数成等比数列,则,插入,两个数,分别,为,_.,设该数列公比为,q,,由题意知,,243,9,q,3,,,q,3,27,,,q,3.,插入两个数分别为,9,3,27,,,27,3,81.,答案,解析,27,,,81,11/54,答案,解析,11,设等比数列,a,n,公比为,q,,,8,a,2,a,5,0,,,8,a,1,q,a,1,q,4,0.,q,3,8,0,,,q,2,,,12/54,题型分类深度剖析,13/54,题型一等比数列基本量运算,答案,解析,解得,a,4,2.,设等比数列,a,n,公比为,q,,,14/54,(2),在各项均为正数等比数列,a,n,中,,a,2,,,a,4,2,,,a,5,成等差数列,,a,1,2,,,S,n,是数列,a,n,前,n,项和,则,S,10,S,4,等于,A.1 008 B.2 016,C.2 032 D.4 032,答案,解析,由题意知,2(,a,4,2),a,2,a,5,,,即,2(2,q,3,2),2,q,2,q,4,q,(2,q,3,2),,得,q,2,,,所以,S,10,S,4,2 016.,故选,B.,15/54,等比数列基本量运算是等比数列中一类基本问题,数列中有五个量,a,1,,,n,,,q,,,a,n,,,S,n,,普通能够,“,知三求二,”,,经过列方程,(,组,),可迎刃而解,.,思维升华,16/54,跟踪训练,1,(1)(,诸暨市质检,),已知等比数列,a,n,首项,a,1,1,,且,a,2,,,a,4,,,a,3,成等差数列,则数列,a,n,公比,q,_,,数列,a,n,前,4,项和,S,4,_.,由,a,2,,,a,4,,,a,3,成等差数列得,2,a,1,q,3,a,1,q,a,1,q,2,,,当,q,1,时,,S,4,4,a,1,4,,,答案,解析,17/54,(2)(,湖南,),设,S,n,为等比数列,a,n,前,n,项和,若,a,1,1,,且,3,S,1,,,2,S,2,,,S,3,成等差数列,则,a,n,_.,3,n,1,答案,解析,由,3,S,1,,,2,S,2,,,S,3,成等差数列知,,4,S,2,3,S,1,S,3,,,可得,a,3,3,a,2,,所以公比,q,3,,,故等比数列通项,a,n,a,1,q,n,1,3,n,1,.,18/54,题型二等比数列判定与证实,例,2,设数列,a,n,前,n,项和为,S,n,,已知,a,1,1,,,S,n,1,4,a,n,2.,(1),设,b,n,a,n,1,2,a,n,,证实:数列,b,n,是等比数列;,证实,19/54,由,a,1,1,及,S,n,1,4,a,n,2,,,得,a,1,a,2,S,2,4,a,1,2.,a,2,5,,,b,1,a,2,2,a,1,3.,由,,得,a,n,1,4,a,n,4,a,n,1,(,n,2),,,a,n,1,2,a,n,2(,a,n,2,a,n,1,)(,n,2).,b,n,a,n,1,2,a,n,,,b,n,2,b,n,1,(,n,2),,,故,b,n,是首项,b,1,3,,公比为,2,等比数列,.,20/54,(2),求数列,a,n,通项公式,.,解答,由,(1),知,b,n,a,n,1,2,a,n,32,n,1,,,故,a,n,(3,n,1)2,n,2,.,21/54,引申探究,若将例,2,中,“,S,n,1,4,a,n,2,”,改为,“,S,n,1,2,S,n,(,n,1),”,,其它不变,求数列,a,n,通项公式,.,由已知得,n,2,时,,S,n,2,S,n,1,n,.,S,n,1,S,n,2,S,n,2,S,n,1,1,,,a,n,1,2,a,n,1,,,a,n,1,1,2(,a,n,1),,,n,2,,,又,a,1,1,,,S,2,a,1,a,2,2,a,1,2,,,a,2,3,,,当,n,1,时上式也成立,,故,a,n,1,是以,2,为首项,以,2,为公比等比数列,,a,n,1,22,n,1,2,n,,,a,n,2,n,1.,解答,22/54,(1),证实一个数列为等比数列惯用定义法与等比中项法,其它方法只用于选择题、填空题中判定;若证实某数列不是等比数列,则只要证实存在连续三项不成等比数列即可,.,(2),利用递推关系时要注意对,n,1,时情况进行验证,.,思维升华,23/54,跟踪训练,2,已知数列,a,n,满足,a,1,1,,,a,n,1,3,a,n,1.,证实,24/54,证实,因为当,n,1,时,,3,n,1,2,3,n,1,,,25/54,题型三等比数列性质应用,例,3,(1),若等比数列,a,n,各项均为正数,且,a,10,a,11,a,9,a,12,2e,5,,则,ln,a,1,ln,a,2,ln,a,20,_.,答案,解析,50,因为,a,10,a,11,a,9,a,12,2,a,10,a,11,2e,5,,,所以,a,10,a,11,e,5,.,所以,ln,a,1,ln,a,2,ln,a,20,ln(,a,1,a,2,a,20,),ln,(,a,1,a,20,)(,a,2,a,19,),(,a,10,a,11,),ln(,a,10,a,11,),10,10ln(,a,10,a,11,),10ln e,5,50ln e,50.,26/54,方法一,S,6,S,3,1,2,,,a,n,公比,q,1.,S,3,,,S,6,S,3,,,S,9,S,6,也成等比数列,即,(,S,6,S,3,),2,S,3,(,S,9,S,6,),,,答案,解析,27/54,等比数列常见性质应用,等比数列性质应用能够分为三类:,(1),通项公式变形;,(2),等比中项变形;,(3),前,n,项和公式变形,.,依据题目条件,认真分析,发觉详细改变特征即可找出处理问题突破口,.,思维升华,28/54,跟踪训练,3,(1),已知在等比数列,a,n,中,,a,1,a,4,10,,则数列,lg,a,n,前,4,项和等于,A.4 B.3 C.2 D.1,答案,解析,前,4,项和,S,4,lg,a,1,lg,a,2,lg,a,3,lg,a,4,lg(,a,1,a,2,a,3,a,4,),,,又,等比数列,a,n,中,,a,2,a,3,a,1,a,4,10,,,S,4,lg 100,2.,29/54,(2),设等比数列,a,n,中,前,n,项和为,S,n,,已知,S,3,8,,,S,6,7,,则,a,7,a,8,a,9,等于,答案,解析,因为,a,7,a,8,a,9,S,9,S,6,,且公比不等于,1,,,在等比数列中,,S,3,,,S,6,S,3,,,S,9,S,6,也成等比数列,,即,8,,,1,,,S,9,S,6,成等比数列,,30/54,分类讨论思想在等比数列中应用,思想与方法系列,14,(1),利用等差数列性质求出等比数列公比,写出通项公式;,(2),求出前,n,项和,依据函数单调性证实,.,规范解答,思想方法指导,31/54,(1),解,设等比数列,a,n,公比为,q,,,因为,2,S,2,,,S,3,,,4,S,4,成等差数列,,所以,S,3,2,S,2,4,S,4,S,3,,即,S,4,S,3,S,2,S,4,,,32/54,33/54,34/54,课时训练,35/54,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,36/54,2.(,珠海模拟,),在等比数列,a,n,中,若,a,1,0,,,由,a,2,,,a,4,2,,,a,5,成等差数列,得,a,2,a,5,2(,a,4,2),,,即,2,q,2,q,4,2(2,q,3,2),,,(,q,2)(1,q,3,),0,,,解得,q,2,或,q,1(,舍去,),,,1,2,3,4,5,6,7,8,9,10,11,12,13,39/54,5.,已知数列,a,n,满足,log,3,a,n,1,log,3,a,n,1,(,n,N,*,),,且,a,2,a,4,a,6,9,,则,值是,答案,解析,由,log,3,a,n,1,log,3,a,n,1,(,n,N,*,),,,因为,a,5,a,7,a,9,(,a,2,a,4,a,6,),q,3,,,所以,a,5,a,7,a,9,9,3,3,3,5,.,所以,5.,1,2,3,4,5,6,7,8,9,10,11,12,13,40/54,6.(,铜仁质量检测,),在由正数组成等比数列,a,n,中,若,a,3,a,4,a,5,3,,则,sin(log,3,a,1,log,3,a,2,log,3,a,7,),值为,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,41/54,7.,设,S,n,为等比数列,a,n,前,n,项和,已知,3,S,3,a,4,2,,,3,S,2,a,3,2,,则公比,q,_.,答案,解析,4,由,,得,3,a,3,a,4,a,3,,即,4,a,3,a,4,,,1,2,3,4,5,6,7,8,9,10,11,12,13,42/54,8.,设各项都是正数等比数列,a,n,,,S,n,为前,n,项和且,S,10,10,,,S,30,70,,那么,S,40,_.,答案,解析,150,依题意,知数列,a,n,公比,q,1,,数列,S,10,,,S,20,S,10,,,S,30,S,20,,,S,40,S,30,成等比数列,,所以有,(,S,20,S,10,),2,S,10,(,S,30,S,20,),,,即,(,S,20,10),2,10(70,S,20,),,故,S,20,20,或,S,20,30,;,又,S,20,0,,所以,S,20,30,,,S,20,S,10,20,,,S,30,S,20,40,,,故,S,40,S,30,80,,,S,40,150.,1,2,3,4,5,6,7,8,9,10,11,12,13,43/54,9.,已知数列,a,n,前,n,项和为,S,n,,且满足,a,n,S,n,1(,n,N,*,),,则通项,a,n,_.,答案,解析,a,n,S,n,1,,,1,2,3,4,5,6,7,8,9,10,11,12,13,44/54,1 024,a,4,b,1,b,2,b,3,,,,,a,n,b,1,b,2,b,3,b,n,1,,,a,21,b,1,b,2,b,3,b,20,(,b,10,b,11,),10,2,10,1 024.,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,45/54,11.,已知,a,n,是等差数列,满足,a,1,3,,,a,4,12,,数列,b,n,满足,b,1,4,,,b,4,20,,且,b,n,a,n,是等比数列,.,(1),求数列,a,n,和,b,n,通项公式;,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,46/54,设等差数列公差为,d,,,所以,a,n,a,1,(,n,1),d,3,n,(,n,N,*,).,设等比数列,b,n,a,n,公比为,q,,,所以,b,n,a,n,(,b,1,a,1,),q,n,1,2,n,1,.,从而,b,n,3,n,2,n,1,(,n,N,*,).,1,2,3,4,5,6,7,8,9,10,11,12,13,47/54,(2),求数列,b,n,前,n,项和,.,解答,由,(1),知,b,n,3,n,2,n,1,(,n,N,*,),,,1,2,3,4,5,6,7,8,9,10,11,12,13,48/54,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,49/54,(2),求,a,n,通项公式,.,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,50/54,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,51/54,b,n,a,2,n,a,2,n,1,,,1,2,3,4,5,6,7,8,9,10,11,12,13,52/54,1,2,3,4,5,6,7,8,9,10,11,12,13,53/54,(2),求,T,2,n,.,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,54/54,
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服