资源描述
剖析题型 提炼方法,实验解读,构建知识网络 强化答题语句,探究高考 明确考向,9.2,两条直线位置关系,第九章平面解析几何,1/80,基础知识自主学习,课时作业,题型分类深度剖析,内容索引,2/80,基础知识自主学习,3/80,1.,两条直线位置关系,(1),两条直线平行与垂直,两条直线平行:,(,),对于两条不重合直线,l,1,,,l,2,,若其斜率分别为,k,1,,,k,2,,则有,l,1,l,2,.,(,),当直线,l,1,,,l,2,不重合且斜率都不存在时,,l,1,l,2,.,两条直线垂直:,(,),假如两条直线,l,1,,,l,2,斜率存在,设为,k,1,,,k,2,,则有,l,1,l,2,.,(,),当其中一条直线斜率不存在,而另一条斜率为,0,时,,l,1,l,2,.,知识梳理,k,1,k,2,k,1,k,2,1,4/80,(2),两条直线交点,直线,l,1,:,A,1,x,B,1,y,C,1,0,,,l,2,:,A,2,x,B,2,y,C,2,0,,则,l,1,与,l,2,交点坐标就,是方程组,解,.,5/80,2.,几个距离,(1),两点,P,1,(,x,1,,,y,1,),,,P,2,(,x,2,,,y,2,),之间距离,|,P,1,P,2,|,.,(2),点,P,0,(,x,0,,,y,0,),到直线,l,:,Ax,By,C,0,距离,d,.,(3),两条平行线,Ax,By,C,1,0,与,Ax,By,C,2,0(,其中,C,1,C,2,),间距离,d,.,6/80,1.,直线系方程,(1),与直线,Ax,By,C,0,平行直线系方程是,Ax,By,m,0(,m,R,且,m,C,).,(2),与直线,Ax,By,C,0,垂直直线系方程是,Bx,Ay,n,0(,n,R,).,2.,两直线平行或重合充要条件,直线,l,1,:,A,1,x,B,1,y,C,1,0,与直线,l,2,:,A,2,x,B,2,y,C,2,0,平行或重合充要条件是,.,【,知识拓展,】,A,1,B,2,A,2,B,1,0,7/80,3.,两直线垂直充要条件,直线,l,1,:,A,1,x,B,1,y,C,1,0,与直线,l,2,:,A,2,x,B,2,y,C,2,0,垂直充要条件是,.,4.,过直线,l,1,:,A,1,x,B,1,y,C,1,0,与,l,2,:,A,2,x,B,2,y,C,2,0,交点直线系方程为,A,1,x,B,1,y,C,1,(,A,2,x,B,2,y,C,2,),0(,R,),,但不包含,l,2,.,5.,点到直线、两平行线间距离公式使用条件,(1),求点到直线距离时,应先化直线方程为普通式,.,(2),求两平行线之间距离时,应先将方程化为普通式且,x,,,y,系数对应相等,.,A,1,A,2,B,1,B,2,0,8/80,题组一思索辨析,1.,判断以下结论是否正确,(,请在括号中打,“”,或,“”,),(1),当直线,l,1,和,l,2,斜率都存在时,一定有,k,1,k,2,l,1,l,2,.(,),(2),假如两条直线,l,1,与,l,2,垂直,则它们斜率之积一定为,1.(,),(3),已知直线,l,1,:,A,1,x,B,1,y,C,1,0,,,l,2,:,A,2,x,B,2,y,C,2,0(,A,1,,,B,1,,,C,1,,,A,2,,,B,2,,,C,2,为常数,),,若直线,l,1,l,2,,则,A,1,A,2,B,1,B,2,0.(,),基础自测,1,2,3,4,5,6,9/80,(4),点,P,(,x,0,,,y,0,),到直线,y,kx,b,距离为,.(,),(5),直线外一点与直线上一点距离最小值就是点到直线距离,.(,),(6),若点,A,,,B,关于直线,l,:,y,kx,b,(,k,0),对称,则直线,AB,斜率等于,,且线段,AB,中点在直线,l,上,.(,),1,2,3,4,5,6,10/80,题组二教材改编,2.P110B,组,T2,已知点,(,a,2)(,a,0),到直线,l,:,x,y,3,0,距离为,1,,则,a,等于,解析,答案,1,2,3,4,5,6,11/80,3.P101A,组,T10,已知,P,(,2,,,m,),,,Q,(,m,4),,且直线,PQ,垂直于直线,x,y,1,0,,则,m,_.,解析,1,2,3,4,5,6,答案,1,所以,m,4,2,m,,,所以,m,1.,12/80,题组三易错自纠,4.(,郑州调研,),直线,2,x,(,m,1),y,4,0,与直线,mx,3,y,2,0,平行,则,m,等于,A.2 B.,3,C.2,或,3 D.,2,或,3,解析,直线,2,x,(,m,1),y,4,0,与直线,mx,3,y,2,0,平行,,解析,1,2,3,4,5,6,答案,13/80,5.,直线,2,x,2,y,1,0,,,x,y,2,0,之间距离是,_.,解析,答案,1,2,3,4,5,6,14/80,6.,若直线,(3,a,2),x,(1,4,a,),y,8,0,与,(5,a,2),x,(,a,4),y,7,0,垂直,则,a,_.,解析,0,或,1,答案,解析,由两直线垂直充要条件,得,(3,a,2)(5,a,2),(1,4,a,)(,a,4),0,,解得,a,0,或,a,1.,1,2,3,4,5,6,15/80,题型分类深度剖析,16/80,典例,(,青岛模拟,),已知两条直线,l,1,:,ax,by,4,0,和,l,2,:,(,a,1),x,y,b,0,,求满足以下条件,a,,,b,值,.,(1),l,1,l,2,,且,l,1,过点,(,3,,,1),;,题型一两条直线位置关系,师生共研,解答,17/80,解,由已知可得,l,2,斜率存在,且,k,2,1,a,.,若,k,2,0,,则,1,a,0,,,a,1.,l,1,l,2,,直线,l,1,斜率,k,1,必不存在,即,b,0.,又,l,1,过点,(,3,,,1),,,k,2,0,,即,k,1,,,k,2,都存在且不为,0.,又,l,1,过点,(,3,,,1),,,3,a,b,4,0.(*),由,(*)(*),联立,解得,a,2,,,b,2.,18/80,(2),l,1,l,2,,且坐标原点到这两条直线距离相等,.,解答,19/80,解,l,2,斜率存在,,l,1,l,2,,,又,坐标原点到这两条直线距离相等,且,l,1,l,2,,,20/80,(1),当直线方程中存在字母参数时,不但要考虑到斜率存在普通情况,也要考虑到斜率不存在特殊情况,.,同时还要注意,x,,,y,系数不能同时为零这一隐含条件,.,(2),在判断两直线平行、垂直时,也可直接利用直线方程系数间关系得出结论,.,思维升华,21/80,跟踪训练,已知直线,l,1,:,ax,2,y,6,0,和直线,l,2,:,x,(,a,1),y,a,2,1,0.,(1),试判断,l,1,与,l,2,是否平行;,解答,22/80,解,方法一,当,a,1,时,,l,1,:,x,2,y,6,0,,,l,2,:,x,0,,,l,1,不平行于,l,2,;,当,a,0,时,,l,1,:,y,3,,,l,2,:,x,y,1,0,,,l,1,不平行于,l,2,;,综上可知,当,a,1,时,,l,1,l,2,.,23/80,方法二,由,A,1,B,2,A,2,B,1,0,,,得,a,(,a,1),1,2,0,,,由,A,1,C,2,A,2,C,1,0,,,得,a,(,a,2,1),1,6,0,,,故当,a,1,时,,l,1,l,2,.,24/80,(2),当,l,1,l,2,时,求,a,值,.,解答,25/80,解,方法一,当,a,1,时,,l,1,:,x,2,y,6,0,,,l,2,:,x,0,,,l,1,与,l,2,不垂直,故,a,1,不成立;,当,a,0,时,,l,1,:,y,3,,,l,2,:,x,y,1,0,,,l,1,不垂直于,l,2,,,故,a,0,不成立;,当,a,1,且,a,0,时,,26/80,解析,答案,题型二两直线交点与距离问题,自主演练,27/80,28/80,又,交点位于第一象限,,29/80,而直线方程,y,kx,2,k,1,可变形为,y,1,k,(,x,2),,表示这是一条过定点,P,(,2,1),,斜率为,k,动直线,.,两直线交点在第一象限,,两直线交点必在线段,AB,上,(,不包含端点,),,,动直线斜率,k,需满足,k,PA,k,k,PB,.,30/80,2.,若直线,l,过点,P,(,1,2),且到点,A,(2,3),和点,B,(,4,5),距离相等,则直线,l,方程为,_.,解析,x,3,y,5,0,或,x,1,答案,31/80,解析,方法一,当直线,l,斜率存在时,设直线,l,方程为,y,2,k,(,x,1),,即,kx,y,k,2,0.,当直线,l,斜率不存在时,直线,l,方程为,x,1,,也符合题意,.,32/80,当,l,过,AB,中点时,,AB,中点为,(,1,4).,直线,l,方程为,x,1.,故所求直线,l,方程为,x,3,y,5,0,或,x,1.,33/80,(1),求过两直线交点直线方程方法,先求出两直线交点坐标,再结合其它条件写出直线方程,.,(2),利用距离公式应注意:,点,P,(,x,0,,,y,0,),到直线,x,a,距离,d,|,x,0,a,|,,到直线,y,b,距离,d,|,y,0,b,|,;,两平行线间距离公式要把两直线方程中,x,,,y,系数化为相等,.,思维升华,34/80,命题点,1,点关于点中心对称,解析,题型三对称问题,多维探究,解析,设,l,1,与,l,交点为,A,(,a,8,2,a,),,则由题意知,点,A,关于点,P,对称点,B,(,a,2,a,6),在,l,2,上,代入,l,2,方程得,a,3(2,a,6),10,0,,解得,a,4,,即点,A,(4,0),在直线,l,上,所以直线,l,方程为,x,4,y,4,0.,典例,过点,P,(0,1),作直线,l,,使它被直线,l,1,:,2,x,y,8,0,和,l,2,:,x,3,y,10,0,截得线段被点,P,平分,则直线,l,方程为,_.,x,4,y,4,0,答案,35/80,典例,如图,已知,A,(4,0),,,B,(0,4),,从点,P,(2,0),射出光线经直线,AB,反射后再射到直线,OB,上,最终经直线,OB,反射后又回到,P,点,则光线所经过旅程是,解析,答案,命题点,2,点关于直线对称,解析,直线,AB,方程为,x,y,4,,,点,P,(2,0),关于直线,AB,对称点为,D,(4,2),,,关于,y,轴对称点为,C,(,2,0),,,36/80,典例,已知直线,l,:,2,x,3,y,1,0,,求直线,m,:,3,x,2,y,6,0,关于直线,l,对称直线,m,方程,.,解答,命题点,3,直线关于直线对称问题,37/80,解,在直线,m,上任取一点,如,M,(2,0),,,则,M,(2,0),关于直线,l,对称点,M,必在直线,m,上,.,38/80,又,直线,m,经过点,N,(4,3),,,由两点式得直线,m,方程为,9,x,46,y,102,0.,39/80,处理对称问题方法,(1),中心对称,思维升华,直线关于点对称可转化为点关于点对称问题来处理,.,40/80,(2),轴对称,直线关于直线对称可转化为点关于直线对称问题来处理,.,41/80,跟踪训练,已知直线,l,:,3,x,y,3,0,,求:,(1),点,P,(4,5),关于,l,对称点;,解答,42/80,解,设,P,(,x,,,y,),关于直线,l,:,3,x,y,3,0,对称点为,P,(,x,,,y,),,,又,PP,中点在直线,3,x,y,3,0,上,,把,x,4,,,y,5,代入,得,x,2,,,y,7,,,点,P,(4,5),关于直线,l,对称点,P,坐标为,(,2,7).,43/80,(2),直线,x,y,2,0,关于直线,l,对称直线方程;,解答,解,用,分别代换,x,y,2,0,中,x,,,y,,,化简得,7,x,y,22,0.,44/80,(3),直线,l,关于,(1,2),对称直线,.,解答,解,在直线,l,:,3,x,y,3,0,上取点,M,(0,3),,,关于,(1,2),对称点,M,(,x,,,y,),,,l,关于,(1,2),对称直线平行于,l,,,k,3,,,对称直线方程为,y,1,3,(,x,2),,,即,3,x,y,5,0.,45/80,妙用直线系求直线方程,思想方法,思想方法指导,规范解答,一、平行直线系,因为两直线平行,它们斜率相等或它们斜率都不存在,所以两直线平行时,它们一次项系数与常数项有必定联络,.,典例,1,求与直线,3,x,4,y,1,0,平行且过点,(1,2),直线,l,方程,.,思想方法指导,因为所求直线与,3,x,4,y,1,0,平行,所以,可设该直线方程为,3,x,4,y,c,0(,c,1).,46/80,规范解答,解,由题意,设所求直线方程为,3,x,4,y,c,0(,c,1),,,又因为直线过点,(1,2),,,所以,3,1,4,2,c,0,,解得,c,11.,所以,所求直线方程为,3,x,4,y,11,0.,47/80,思想方法指导,规范解答,二、垂直直线系,因为直线,A,1,x,B,1,y,C,1,0,与,A,2,x,B,2,y,C,2,0,垂直充要条件为,A,1,A,2,B,1,B,2,0.,所以,当两直线垂直时,它们一次项系数有必定联络,.,能够考虑用直线系方程求解,.,典例,2,求经过,A,(2,1),,且与直线,2,x,y,10,0,垂直直线,l,方程,.,思想方法指导,依据两直线垂直特征设出方程,再由待定系数法求解,.,48/80,规范解答,解,因为所求直线与直线,2,x,y,10,0,垂直,所以设该直线方程为,x,2,y,C,1,0,,又直线过点,A,(2,1),,,所以有,2,2,1,C,1,0,,解得,C,1,0,,,即所求直线方程为,x,2,y,0.,49/80,思想方法指导,三、过直线交点直线系,典例,3,(,湖南东部十校联考,),经过两条直线,2,x,3,y,1,0,和,x,3,y,4,0,交点,而且垂直于直线,3,x,4,y,7,0,直线方程为,_.,思想方法指导,可分别求出直线,l,1,与,l,2,交点及直线,l,斜率,k,,直接写出方程;也能够依据垂直关系设出所求方程,再把交点坐标代入求解;又能够利用过交点直线系方程设直线方程,再用待定系数法求解,.,解析,答案,4,x,3,y,9,0,50/80,所求直线与直线,3,x,4,y,7,0,垂直,,51/80,方法二,由垂直关系可设所求直线方程为,4,x,3,y,m,0,,,代入,4,x,3,y,m,0,,得,m,9,,,故所求直线方程为,4,x,3,y,9,0.,方法三,由题意可设所求直线方程为,(2,x,3,y,1),(,x,3,y,4),0,,,即,(2,),x,(3,3,),y,1,4,0,,,又,所求直线与直线,3,x,4,y,7,0,垂直,,3(2,),4(3,3,),0,,,2,,代入,式得所求直线方程为,4,x,3,y,9,0.,52/80,课时作业,53/80,1.,直线,2,x,y,m,0,和,x,2,y,n,0,位置关系是,A.,平行,B.,垂直,C.,相交但不垂直,D.,不能确定,基础保,分练,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析,直线,2,x,y,m,0,斜率,k,1,2,,,解析,答案,则,k,1,k,2,,且,k,1,k,2,1.,故选,C.,54/80,2.(,邢台模拟,),“,a,1,”,是,“,直线,ax,3,y,3,0,和直线,x,(,a,2),y,1,0,平行,”,A.,充分无须要条件,B.,必要不充分条件,C.,充要条件,D.,既不充分也无须要条件,解析,答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解得,a,1,,故选,C.,55/80,3.,从点,(2,3),射出光线沿与向量,a,(8,4),平行直线射到,y,轴上,则反射光线所在直线方程为,A.,x,2,y,4,0 B.2,x,y,1,0,C.,x,6,y,16,0 D.6,x,y,8,0,答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,其与,y,轴交点坐标为,(0,2),,,解析,又点,(2,3),关于,y,轴对称点为,(,2,3),,,所以反射光线过点,(,2,3),与,(0,2),,由两点式知,A,正确,.,56/80,4.(,兰州一模,),一只虫子从点,O,(0,0),出发,先爬行到直线,l,:,x,y,1,0,上,P,点,再从,P,点出发爬行到点,A,(1,,,1),,则虫子爬行最短旅程是,A.B.2 C.3 D.4,解析,答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析,点,O,(0,0),关于直线,x,y,1,0,对称点为,O,(,1,1),,,57/80,5.,若直线,l,1,:,x,ay,6,0,与,l,2,:,(,a,2),x,3,y,2,a,0,平行,则,l,1,与,l,2,之间距离为,解析,答案,解析,l,1,l,2,,,a,2,且,a,0,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,58/80,6.,若直线,l,1,:,y,k,(,x,4),与直线,l,2,关于点,(2,1),对称,则直线,l,2,经过定点,A.(0,4)B.(0,2),C.(,2,4)D.(4,,,2),答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析,解析,直线,l,1,:,y,k,(,x,4),经过定点,(4,0),,,其关于点,(2,1),对称点为,(0,2),,,又直线,l,1,:,y,k,(,x,4),与直线,l,2,关于点,(2,1),对称,,故直线,l,2,经过定点,(0,2).,59/80,解析,答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,7.,若三条直线,y,2,x,,,x,y,3,,,mx,2,y,5,0,相交于同一点,则,m,值为,_.,9,点,(1,2),满足方程,mx,2,y,5,0,,,即,m,1,2,2,5,0,,,m,9.,60/80,答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析,8.,将一张坐标纸折叠一次,使得点,(0,2),与点,(4,0),重合,点,(7,3),与点,(,m,,,n,),重合,则,m,n,_.,解析,由题意可知,纸折痕应是点,(0,2),与点,(4,0),连线中垂线,即直线,y,2,x,3,,它也是点,(7,3),与点,(,m,,,n,),连线中垂线,,61/80,解析,直线,l,1,:,ax,y,6,0,与,l,2,:,x,(,a,2),y,a,1,0,相交于点,P,,且,l,1,l,2,,,a,1,1,(,a,2),0,,,解析,答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,9.(,浙江嘉兴一中月考,),已知直线,l,1,:,ax,y,6,0,与,l,2,:,x,(,a,2),y,a,1,0,相交于点,P,,若,l,1,l,2,,则,a,_,,此时点,P,坐标为,_.,1,(3,3),易得,x,3,,,y,3,,,P,(3,3).,62/80,10.,已知直线,l,1,:,ax,y,1,0,,直线,l,2,:,x,y,3,0,,若直线,l,1,倾斜角为,,则,a,_,;若,l,1,l,2,,则,a,_,;若,l,1,l,2,,则两平行直线间距离为,_.,若,l,1,l,2,,则,a,1,1,(,1),0,,故,a,1,;,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,答案,1,若,l,1,l,2,,,63/80,11.,已知方程,(2,),x,(1,),y,2(3,2,),0,与点,P,(,2,2).,(1),证实:对任意实数,,该方程都表示直线,且这些直线都经过同一定点,并求出这一定点坐标;,解,显然,2,与,(1,),不可能同时为零,故对任意实数,,该方程都表示直线,.,方程可变形为,2,x,y,6,(,x,y,4),0,,,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,故直线经过定点为,M,(2,,,2).,64/80,(2),证实:该方程表示直线与点,P,距离,d,小于,4 .,证实,过,P,作直线垂线段,PQ,,由垂线段小于斜线段知,|,PQ,|,|,PM,|,,当且仅当,Q,与,M,重合时,,|,PQ,|,|,PM,|,,,此时对应直线方程是,y,2,x,2,,即,x,y,4,0.,但直线系方程唯独不能表示直线,x,y,4,0,,,证实,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,65/80,12.,已知三条直线:,l,1,:,2,x,y,a,0(,a,0),;,l,2,:,4,x,2,y,1,0,;,l,3,:,x,y,1,0,,且,l,1,与,l,2,间距离是,.,(1),求,a,值;,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,又,a,0,,解得,a,3.,66/80,(2),能否找到一点,P,,使,P,同时满足以下三个条件:,点,P,在第一象限;,点,P,到,l,1,距离是点,P,到,l,2,距离,;,点,P,到,l,1,距离与点,P,到,l,3,距离之比是,.,若能,求点,P,坐标;若不能,请说明理由,.,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,67/80,解,假设存在点,P,,设点,P,(,x,0,,,y,0,).,若点,P,满足条件,,,则点,P,在与,l,1,,,l,2,平行直线,l,:,2,x,y,c,0,上,,若点,P,满足条件,,由点到直线距离公式,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,68/80,即,|2,x,0,y,0,3|,|,x,0,y,0,1|,,,所以,x,0,2,y,0,4,0,或,3,x,0,2,0,;,因为点,P,在第一象限,所以,3,x,0,2,0,不可能,.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,69/80,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,70/80,技能提升练,答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析,13.(,湖北孝感五校联考,),已知直线,y,2,x,是,ABC,中,C,平分线所在直线,若点,A,,,B,坐标分别是,(,4,2),,,(3,1),,则点,C,坐标为,A.(,2,4)B.(,2,,,4),C.(2,4)D.(2,,,4),71/80,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析,设,A,(,4,2),关于直线,y,2,x,对称点为,(,x,,,y,),,,72/80,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,即,3,x,y,10,0.,同理可得点,B,(3,1),关于直线,y,2,x,对称点为,(,1,3),,,73/80,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,答案,74/80,解析,因为动直线,l,:,ax,by,c,2,0(,a,0,,,c,0),恒过点,P,(1,,,m,),,,所以,a,bm,c,2,0,,又,Q,(4,0),到动直线,l,最大距离为,3,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,75/80,15.,如图,已知直线,l,1,l,2,,点,A,是,l,1,,,l,2,之间定点,点,A,到,l,1,,,l,2,之间距离分别为,3,和,2,,点,B,是,l,2,上一动点,作,AC,AB,,且,AC,与,l,1,交于点,C,,则,ABC,面积最小值为,_.,拓展冲刺练,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,答案,6,76/80,解析,以,A,为坐标原点,平行于,l,1,直线为,x,轴,建立如图所表示直角坐标系,设,B,(,a,,,2),,,C,(,b,3).,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,77/80,16.,在平面直角坐标系,xOy,中,将直线,l,沿,x,轴正方向平移,3,个单位长度,沿,y,轴正方向平移,5,个单位长度,得到直线,l,1,.,再将直线,l,1,沿,x,轴正方向平移,1,个单位长度,沿,y,轴负方向平移,2,个单位长度,又与直线,l,重合,.,若直线,l,与直线,l,1,关于点,(2,3),对称,则直线,l,方程是,_.,答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,6,x,8,y,1,0,解析,78/80,解析,由题意知直线,l,斜率存在,设直线,l,方程为,y,kx,b,,,将直线,l,沿,x,轴正方向平移,3,个单位长度,沿,y,轴正方向平移,5,个单位长度,得到直线,l,1,:,y,k,(,x,3),5,b,,,将直线,l,1,沿,x,轴正方向平移,1,个单位长度,沿,y,轴负方向平移,2,个单位长度,,则平移后直线方程为,y,k,(,x,3,1),b,5,2,,即,y,kx,3,4,k,b,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,79/80,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,80/80,
展开阅读全文