资源描述
剖析题型 提炼方法,实验解读,构建知识网络 强化答题语句,探究高考 明确考向,13.3,数学归纳法,第十三章,推理与证实、算法、复数,1/84,基础知识自主学习,课时作业,题型分类深度剖析,内容索引,2/84,基础知识自主学习,3/84,数学归纳法,普通地,证实一个与正整数,n,相关命题,可按以下步骤进行:,(1)(,归纳奠基,),证实当,n,取,(,n,0,N,*,),时命题成立;,(2)(,归纳递推,),假设当,n,k,(,k,n,0,,,k,N,*,),时命题成立,证实当,时命题也成立,.,只要完成这两个步骤,就能够断定命题对从,n,0,开始全部正整数,n,都成立,.,知识梳理,第一个值,n,0,n,k,1,4/84,题组一思索辨析,1.,判断以下结论是否正确,(,请在括号中打,“”,或,“”,),(1),用数学归纳法证实问题时,第一步是验证当,n,1,时结论成立,.(,),(2),全部与正整数相关数学命题都必须用数学归纳法证实,.(,),(3),用数学归纳法证实问题时,归纳假设能够不用,.(,),(4),不论是等式还是不等式,用数学归纳法证实时,由,n,k,到,n,k,1,时,项数都增加了一项,.(,),基础自测,1,2,3,4,5,6,5/84,(5),用数学归纳法证实等式,“,1,2,2,2,2,n,2,2,n,3,1,”,,验证,n,1,时,左边式子应为,1,2,2,2,2,3,.(,),(6),用数学归纳法证实凸,n,边形内角和公式时,,n,0,3.(,),1,2,3,4,5,6,6/84,题组二教材改编,2.,P99B,组,T1,在应用数学归纳法证实凸,n,边形对角线为,n,(,n,3),条时,第一步检验,n,等于,A.1 B.2,C.3 D.4,答案,解析,1,2,3,4,5,6,解析,凸,n,边形边数最小时是三角形,故第一步检验,n,3.,7/84,3.,P96A,组,T2,已知,a,n,满足,a,n,1,,,n,N,*,,且,a,1,2,,则,a,2,_,,,a,3,_,,,a,4,_,,猜测,a,n,_.,答案,1,2,3,4,5,6,n,1,3,4,5,8/84,解析,答案,题组三易错自纠,4.,用数学归纳法证实,1,a,a,2,a,n,1,(,a,1,,,n,N,*,),,在验证,n,1,时,等式左边项是,A.1 B.1,a,C.1,a,a,2,D.1,a,a,2,a,3,1,2,3,4,5,6,解析,当,n,1,时,,n,1,2,,,左边,1,a,1,a,2,1,a,a,2,.,9/84,则上述证法,A.,过程全部正确,B.,n,1,验证得不正确,C.,归纳假设不正确,D.,从,n,k,到,n,k,1,推理不正确,解析,答案,1,2,3,4,5,6,解析,在,n,k,1,时,没有应用,n,k,时假设,不是数学归纳法,.,10/84,解析,答案,1,2,3,4,5,6,6.,用数学归纳法证实,1,2,3,2,n,2,n,1,2,2,n,1,(,n,N,*,),时,假设当,n,k,时命题成立,则当,n,k,1,时,左端增加项数是,_.,2,k,解析,利用数学归纳法证实,1,2,3,2,n,2,n,1,2,2,n,1,(,n,N,*,).,当,n,k,时,则有,1,2,3,2,k,2,k,1,2,2,k,1,(,k,N,*,),,左边表示为,2,k,项和,.,当,n,k,1,时,则,左边,1,2,3,2,k,(2,k,1),2,k,1,,表示为,2,k,1,项和,增加了,2,k,1,2,k,2,k,项,.,11/84,题型分类深度剖析,12/84,1.,用数学归纳法证实:,题型一用数学归纳法证实等式,自主演练,证实,13/84,证实,(1),当,n,1,时,,左边右边,所以等式成立,.,(2),假设当,n,k,(,k,N,*,且,k,1),时等式成立,即有,14/84,所以当,n,k,1,时,等式也成立,,由,(1)(2),可知,对于一切,n,N,*,等式恒成立,.,15/84,证实,求证:,f,(1),f,(2),f,(,n,1),n,f,(,n,),1(,n,2,,,n,N,*,).,16/84,证实,(1),当,n,2,时,左边,f,(1),1,,,(2),假设当,n,k,(,k,2,,,k,N,*,),时,结论成立,即,f,(1),f,(2),f,(,k,1),k,f,(,k,),1,,,那么,当,n,k,1,时,,f,(1),f,(2),f,(,k,1),f,(,k,),k,f,(,k,),1,f,(,k,),(,k,1),f,(,k,),k,17/84,(,k,1),f,(,k,1),(,k,1),(,k,1),f,(,k,1),1,,,当,n,k,1,时结论成立,.,由,(1)(2),可知当,n,2,,,n,N,*,时,,f,(1),f,(2),f,(,n,1),n,f,(,n,),1,.,18/84,用数学归纳法证实恒等式应注意,(1),明确初始值,n,0,取值并验证当,n,n,0,时等式成立,.,(2),由,n,k,证实,n,k,1,时,搞清左边增加项,且明确变形目标,.,(3),掌握恒等变形惯用方法:,因式分解;,添拆项;,配方法,.,思维升华,19/84,题型二用数学归纳法证实不等式,师生共研,证实,典例,设实数,c,0,,整数,p,1,,,n,N,*,.,(1),证实:当,x,1,且,x,0,时,,(1,x,),p,1,px,;,证实,当,p,2,时,,(1,x,),2,1,2,x,x,2,1,2,x,,原不等式成立,.,假设当,p,k,(,k,2,,,k,N,*,),时,不等式,(1,x,),k,1,kx,成立,.,则当,p,k,1,时,,(1,x,),k,1,(1,x,)(1,x,),k,(1,x,)(1,kx,),1,(,k,1),x,kx,2,1,(,k,1),x,.,所以当,p,k,1,时,原不等式也成立,.,综合,可得,当,x,1,,且,x,0,时,,对一切整数,p,1,,不等式,(1,x,),p,1,px,均成立,.,20/84,证实,21/84,则当,n,k,1,时,,22/84,则,x,p,c,,,23/84,24/84,25/84,数学归纳法证实不等式适用范围及关键,(1),适用范围:当碰到与正整数,n,相关不等式证实时,若用其它方法不轻易证,则可考虑应用数学归纳法,.,(2),关键:由,n,k,时命题成立证,n,k,1,时命题也成立,在归纳假设使用后可利用比较法、综正当、分析法、放缩法等来加以证实,充分应用基本不等式、不等式性质等放缩技巧,使问题得以简化,.,思维升华,26/84,证实,跟踪训练,(,衡水调研,),若函数,f,(,x,),x,2,2,x,3,,定义数列,x,n,以下:,x,1,2,,,x,n,1,是过点,P,(4,5),,,Q,n,(,x,n,,,f,(,x,n,)(,n,N,*,),直线,PQ,n,与,x,轴交点横坐标,试利用数学归纳法证实:,2,x,n,x,n,1,3.,27/84,证实,当,n,1,时,,x,1,2,,,f,(,x,1,),3,,,Q,1,(2,,,3).,所以直线,PQ,1,方程为,y,4,x,11,,,即,n,1,时结论成立,.,假设当,n,k,(,k,1,,,k,N,*,),时,结论成立,即,2,x,k,x,k,1,3.,代入上式,令,y,0,,,28/84,即,x,k,1,x,k,2,,所以,2,x,k,1,x,k,2,3,,,即当,n,k,1,时,结论成立,.,由,知对任意正整数,n,,,2,x,n,x,n,1,1,时,对,x,(0,,,a,1,,有,(,x,),0,,,(,x,),在,(0,,,a,1,上单调递减,,(,a,1)1,时,存在,x,0,,使,(,x,)0(,n,N,*,).,猜测,a,n,通项公式,并用数学归纳法加以证实,.,解答,36/84,解,分别令,n,1,2,3,,得,a,n,0,,,a,1,1,,,a,2,2,,,a,3,3,,,猜测:,a,n,n,.,37/84,a,2,0,,,a,2,2.,(,),假设当,n,k,(,k,2,,,k,N,*,),时,,a,k,k,,那么当,n,k,1,时,,即,a,k,1,(,k,1),a,k,1,(,k,1),0,,,a,k,1,0,,,k,2,,,a,k,1,(,k,1)0,,,a,k,1,k,1,,即当,n,k,1,时也成立,.,a,n,n,(,n,2),,显然当,n,1,时,也成立,,故对于一切,n,N,*,,都有,a,n,n,.,38/84,命题点,3,存在性问题证实,解答,(1),若,b,1,,求,a,2,,,a,3,及数列,a,n,通项公式;,39/84,再由题设条件知,(,a,n,1,1),2,(,a,n,1),2,1.,从而,(,a,n,1),2,是首项为,0,,公差为,1,等差数列,,下面用数学归纳法证实上式:,当,n,1,时结论显然成立,.,40/84,所以当,n,k,1,时结论成立,.,41/84,解答,(2),若,b,1,,问:是否存在实数,c,使得,a,2,n,c,a,2,n,1,对全部,n,N,*,成立?证实你结论,.,42/84,则,a,n,1,f,(,a,n,).,下面用数学归纳法证实加强命题:,a,2,n,c,a,2,n,1,1.,43/84,假设当,n,k,(,k,1,,,k,N,*,),时结论成立,即,a,2,k,c,a,2,k,1,f,(,a,2,k,1,),f,(1),a,2,,即,1,c,a,2,k,2,a,2,.,再由,f,(,x,),在,(,,,1,上为减函数,得,c,f,(,c,),f,(,a,2,k,2,),f,(,a,2,),a,3,1,,故,c,a,2,k,3,1.,所以,a,2(,k,1),c,a,2(,k,1),1,1.,这就是说,当,n,k,1,时结论成立,.,先证:,0,a,n,1(,n,N,*,).,当,n,1,时,结论显然成立,.,44/84,假设当,n,k,(,k,1,,,k,N,*,),时结论成立,即,0,a,k,1.,即,0,a,k,1,1.,这就是说,当,n,k,1,时结论成立,.,故,成立,.,再证:,a,2,n,a,2,n,1,(,n,N,*,).,有,a,2,a,3,,即,n,1,时,成立,.,假设当,n,k,(,k,1,,,k,N,*,),时,结论成立,即,a,2,k,f,(,a,2,k,1,),a,2,k,2,,,a,2(,k,1),f,(,a,2,k,1,),f,(,a,2,n,1,),,即,a,2,n,1,a,2,n,2,,,46/84,47/84,(1),利用数学归纳法能够探索与正整数,n,相关未知问题、存在性问题,其基本模式是,“,归纳,猜测,证实,”,,即先由合情推剪发觉结论,然后经逻辑推理即演绎推理论证结论正确性,.,(2),“,归纳,猜测,证实,”,基本步骤是,“,试验,归纳,猜测,证实,”.,高中阶段与数列结合问题是最常见问题,.,思维升华,48/84,跟踪训练,(,西安模拟,),已知正项数列,a,n,中,对于一切,n,N,*,都有,证实,0,a,n,0,,,49/84,证实,50/84,下面用数学归纳法证实:当,n,2,,且,n,N,*,时猜测正确,.,当,n,2,时已证;,51/84,当,n,k,1,时,猜测正确,.,52/84,典例,(12,分,),数列,a,n,满足,S,n,2,n,a,n,(,n,N,*,).,(1),计算,a,1,,,a,2,,,a,3,,,a,4,,并由此猜测通项公式,a,n,;,(2),证实,(1),中猜测,.,思维点拨,(1),由,S,1,a,1,算出,a,1,;由,a,n,S,n,S,n,1,算出,a,2,,,a,3,,,a,4,,观察所得数值特征猜出通项公式,.,(2),用数学归纳法证实,.,归纳,猜测,证实问题,答题模板,规范解答,答题模板,思维点拨,53/84,规范解答,(1),解,当,n,1,时,,a,1,S,1,2,a,1,,,a,1,1,;,当,n,4,时,,a,1,a,2,a,3,a,4,S,4,2,4,a,4,,,54/84,(2),证实,当,n,1,时,,a,1,1,,结论成立,.,5,分,假设当,n,k,(,k,1,且,k,N,*,),时,结论成立,,那么当,n,k,1,时,,7,分,a,k,1,S,k,1,S,k,2(,k,1),a,k,1,2,k,a,k,2,a,k,a,k,1,,,2,a,k,1,2,a,k,.,9,分,55/84,当,n,k,1,时,结论成立,.,11,分,56/84,答题模板,归纳,猜测,证实问题普通步骤,第一步:计算数列前几项或特殊情况,观察规律猜测数列通项或普通,结论;,第二步:验证普通结论对第一个值,n,0,(,n,0,N,*,),成立;,第三步:假设当,n,k,(,k,n,0,,,k,N,*,),时结论成立,证实当,n,k,1,时结论,也成立;,第四步:下结论,由上可知结论对任意,n,n,0,,,n,N,*,成立,.,57/84,课时作业,58/84,1.(,商丘周测,),设,f,(,x,),是定义在正整数集上函数,且,f,(,x,),满足:,“,当,f,(,k,),k,2,成立时,总可推出,f,(,k,1),(,k,1),2,成立,”.,那么,以下命题总成立是,A.,若,f,(1)1,成立,则,f,(10)100,成立,B.,若,f,(2),右边,,不等式成立,.,假设当,n,k,(,k,2,,且,k,N,*,),时不等式成立,,则当,n,k,1,时,,1,2,3,4,5,6,7,8,65/84,当,n,k,1,时,不等式也成立,.,由,知对于一切大于,1,自然数,n,,不等式都成立,.,1,2,3,4,5,6,7,8,66/84,5.,求证:,(,n,1)(,n,2),(,n,n,),2,n,135,(2,n,1)(,n,N,*,).,证实,1,2,3,4,5,6,7,8,67/84,证实,(1),当,n,1,时,等式左边,2,,右边,2,,故等式成立;,(2),假设当,n,k,(,k,1,,,k,N,*,),时等式成立,,即,(,k,1)(,k,2),(,k,k,),2,k,135,(2,k,1),,,那么当,n,k,1,时,,左边,(,k,1,1)(,k,1,2),(,k,1,k,1),(,k,2)(,k,3),(,k,k,)(2,k,1)(2,k,2),2,k,135,(2,k,1)(2,k,1)2,2,k,1,135,(2,k,1)(2,k,1),,,所以当,n,k,1,时等式也成立,.,由,(1)(2),可知,对全部,n,N,*,等式成立,.,1,2,3,4,5,6,7,8,68/84,(1),证实:,x,n,是递减数列充要条件是,c,0,;,技能提升练,证实,1,2,3,4,5,6,7,8,69/84,证实,充分性:,所以数列,x,n,是递减数列,.,必要性:若,x,n,是递减数列,则,x,2,x,1,,且,x,1,0.,故,x,n,是递减数列充要条件是,c,0.,1,2,3,4,5,6,7,8,70/84,证实,1,2,3,4,5,6,7,8,71/84,1,2,3,4,5,6,7,8,72/84,这就是说当,n,k,1,时,结论也成立,.,1,2,3,4,5,6,7,8,73/84,解答,(1),求,a,值;,1,2,3,4,5,6,7,8,74/84,解得,a,1.,又因为,a,2,1,,所以,a,1.,所以,a,2,1.,1,2,3,4,5,6,7,8,75/84,证实,1,2,3,4,5,6,7,8,76/84,证实,用数学归纳法证实:,故当,n,2,时,原不等式也成立,.,1,2,3,4,5,6,7,8,77/84,所以当,n,k,1,时,原不等式也成立,.,1,2,3,4,5,6,7,8,78/84,证实,拓展冲刺练,8.(,浙江,),已知数列,x,n,满足:,x,1,1,,,x,n,x,n,1,ln(1,x,n,1,)(,n,N,*,).,证实:当,n,N,*,时,,(1)0,x,n,1,x,n,;,1,2,3,4,5,6,7,8,79/84,证实,用数学归纳法证实,x,n,0.,当,n,1,时,,x,1,1,0.,假设当,n,k,时,,x,k,0,,,那么当,n,k,1,时,若,x,k,1,0,,,则,0,x,k,x,k,1,ln(1,x,k,1,),0,,与假设矛盾,,故,x,k,1,0,,,所以,x,n,0(,n,N,*,).,所以,x,n,x,n,1,ln(1,x,n,1,),x,n,1,,,所以,0,x,n,1,x,n,(,n,N,*,).,1,2,3,4,5,6,7,8,80/84,证实,1,2,3,4,5,6,7,8,81/84,证实,由,x,n,x,n,1,ln(1,x,n,1,),得,,x,n,x,n,1,4,x,n,1,2,x,n,记函数,f,(,x,),x,2,2,x,(,x,2)ln(1,x,)(,x,0).,函数,f,(,x,),在,0,,,),上单调递增,所以,f,(,x,),f,(0),0,,,1,2,3,4,5,6,7,8,82/84,证实,1,2,3,4,5,6,7,8,83/84,证实,因为,x,n,x,n,1,ln(1,x,n,1,),x,n,1,x,n,1,2,x,n,1,,,1,2,3,4,5,6,7,8,84/84,
展开阅读全文