资源描述
,第,3,讲数列综合问题,专题四数列、推理与证实,1/49,热点分类突破,真题押题精练,2/49,热点分类突破,3/49,热点一利用,S,n,,,a,n,关系式求,a,n,1.,数列,a,n,中,,a,n,与,S,n,关系,2.,求数列通项惯用方法,(1),公式法:利用等差,(,比,),数列求通项公式,.,(2),在已知数列,a,n,中,满足,a,n,1,a,n,f,(,n,),,且,f,(1),f,(2),f,(,n,),可求,则可用累加法求数列通项,a,n,.,(3),在已知数列,a,n,中,满足,f,(,n,),,且,f,(1),f,(2),f,(,n,),可求,则可用,累乘法求数列通项,a,n,.,(4),将递推关系进行变换,转化为常见数列,(,等差、等比数列,).,4/49,例,1,已知等差数列,a,n,中,,a,2,2,,,a,3,a,5,8,,数列,b,n,中,,b,1,2,,其前,n,项和,S,n,满足:,b,n,1,S,n,2(,n,N,*,).,(1),求数列,a,n,,,b,n,通项公式;,解答,5/49,解,a,2,2,,,a,3,a,5,8,,,2,d,2,3,d,8,,,d,1,,,a,n,n,.,b,n,1,S,n,2(,n,N,*,),,,b,n,S,n,1,2(,n,N,*,,,n,2).,由,,得,b,n,1,b,n,S,n,S,n,1,b,n,(,n,N,*,,,n,2),,,b,n,1,2,b,n,(,n,N,*,,,n,2).,b,1,2,,,b,2,2,b,1,,,b,n,为首项为,2,,公比为,2,等比数列,,b,n,2,n,.,6/49,解答,思维升华,给出,S,n,与,a,n,递推关系,求,a,n,,惯用思绪:一是利用,S,n,S,n,1,a,n,(,n,2),转化为,a,n,递推关系,再求其通项公式;二是转化为,S,n,递推关系,先求出,S,n,与,n,之间关系,再求,a,n,.,思维升华,7/49,两式相减,得,8/49,证实,跟踪演练,1,(,天津市红桥区重点中学八校联考,),已知数列,a,n,前,n,项和为,S,n,,且满足,S,n,n,2(,a,n,2)(,n,N,*,).,(1),证实:数列,a,n,1,为等比数列;,9/49,证实,S,n,n,2(,a,n,2),,,当,n,2,时,,S,n,1,(,n,1),2(,a,n,1,2),,,两式相减,得,a,n,1,2,a,n,2,a,n,1,,,a,n,2,a,n,1,1,,,a,n,1,2(,a,n,1,1),,,又当,n,1,时,,a,1,1,2(,a,1,2),,,得,a,1,3,,,a,1,1,2,,,数列,a,n,1,是以,2,为首项,,2,为公比等比数列,.,10/49,(2),若,b,n,a,n,log,2,(,a,n,1),,数列,b,n,前,n,项和为,T,n,,求,T,n,.,解答,11/49,解,由,(1),知,,a,n,1,2,2,n,1,2,n,,,a,n,2,n,1,,,又,b,n,a,n,log,2,(,a,n,1),,,b,n,n,(2,n,1),,,T,n,b,1,b,2,b,3,b,n,(1,2,2,2,2,3,2,3,n,2,n,),(1,2,3,n,),,,设,A,n,1,2,2,2,2,3,2,3,(,n,1),2,n,1,n,2,n,,,则,2,A,n,1,2,2,2,2,3,(,n,1),2,n,n,2,n,1,,,两式相减,得,A,n,2,2,2,2,3,2,n,n,2,n,1,12/49,A,n,(,n,1),2,n,1,2.,13/49,热点二数列与函数、不等式综合问题,数列与函数综合问题普通是利用函数作为背景,给出数列所满足条件,通常利用点在曲线上给出,S,n,表示式,还有以曲线上切点为背景问题,处理这类问题关键在于利用数列与函数对应关系,将条件进行准确转化,.,数列与不等式综合问题普通以数列为载体,考查最值问题,不等关系或恒成立问题,.,14/49,例,2,设,f,n,(,x,),x,x,2,x,n,1,,,x,0,,,n,N,,,n,2.,(1),求,f,n,(2),;,解答,15/49,解,方法一,由题设,f,n,(,x,),1,2,x,nx,n,1,,,所以,f,n,(2),1,2,2,(,n,1)2,n,2,n,2,n,1,,,则,2,f,n,(2),2,2,2,2,(,n,1)2,n,1,n,2,n,,,由,得,,f,n,(2),1,2,2,2,2,n,1,n,2,n,所以,f,n,(2),(,n,1)2,n,1.,16/49,(,n,1)2,n,1.,17/49,证实,思维升华,处理数列与函数、不等式综合问题要注意以下几点,(1),数列是一类特殊函数,函数定义域是正整数,在求数列最值或不等关系时要尤其重视,.,(2),解题时准确结构函数,利用函数性质时注意限制条件,.,(3),不等关系证实中进行适当放缩,.,思维升华,18/49,证实,因为,f,n,(0),1,0,,,又,f,n,(,x,),1,2,x,nx,n,1,0,,,19/49,20/49,证实,跟踪演练,2,(,届浙江省宁波市期末,),已知数列,a,n,满足,a,1,2,,,a,n,1,2(,S,n,n,1)(,n,N,*,),,令,b,n,a,n,1.,(1),求证:,b,n,是等比数列;,证实,a,1,2,,,a,2,2(2,2),8,,,a,n,1,2(,S,n,n,1)(,n,N,*,),a,n,2(,S,n,1,n,)(,n,2),,,两式相减,得,a,n,1,3,a,n,2(,n,2).,经检验,当,n,1,时上式也成立,,即,a,n,1,3,a,n,2(,n,1).,所以,a,n,1,1,3(,a,n,1),,即,b,n,1,3,b,n,,且,b,1,3.,故,b,n,是等比数列,.,21/49,(2),记数列,nb,n,前,n,项和为,T,n,,求,T,n,;,解答,解,由,(1),得,b,n,3,n,.,T,n,1,3,2,3,2,3,3,3,n,3,n,,,3,T,n,1,3,2,2,3,3,3,3,4,n,3,n,1,,,两式相减,得,2,T,n,3,3,2,3,3,3,n,n,3,n,1,22/49,证实,23/49,24/49,25/49,热点三数列实际应用,用数列知识解相关实际问题,关键是合理建立数学模型,数列模型,搞清所结构数列是等差模型还是等比模型,它首项是什么,项数是多少,然后转化为解数列问题,.,求解时,要明确目标,即搞清是求和,还是求通项,还是解递推关系问题,所求结论对应是解方程问题,还是解不等式问题,还是最值问题,然后进行合理推算,得出实际问题结果,.,26/49,例,3,自从祖国大陆允许台湾农民到大陆创业以来,在,11,个省区设置了海峡两岸农业合作试验区和台湾农民创业园,台湾农民在那里申办个体工商户能够享受,“,绿色通道,”,申请、受理、审批一站式服务,某台商第一年年初到大陆就创办了一座,120,万元蔬菜加工厂,M,,,M,价值在使用过程中逐年降低,从第二年到第六年,每年年初,M,价值比上年年初降低,10,万元,从第七年开始,每年年初,M,价值为上年年初,75%.,(1),求第,n,年年初,M,价值,a,n,表示式;,解答,27/49,解,当,n,6,时,数列,a,n,是首项为,120,,公差为,10,等差数列,故,a,n,120,10(,n,1),130,10,n,,,当,n,7,时,数列,a,n,从,a,6,开始项组成一个以,a,6,130,60,70,为首项,,以,为公比等比数列,,28/49,(2),设,A,n,,若,A,n,大于,80,万元,则,M,继续使用,不然须在,第,n,年年初对,M,更新,证实:必须在第九年年初对,M,更新,.,证实,思维升华,29/49,证实,设,S,n,表示数列,a,n,前,n,项和,由等差数列和等比数列求和公式,得,当,1,n,6,时,,S,n,120,n,5,n,(,n,1),,,当,n,7,时,因为,S,6,570,,,30/49,因为,a,n,是递减数列,所以,A,n,是递减数列,.,所以必须在第九年年初对,M,更新,.,31/49,思维升华,常见数列应用题模型求解方法,(1),产值模型:原来产值基础数为,N,,平均增加率为,p,,对于时间,n,总产值,y,N,(1,p,),n,.,(2),银行储蓄复利公式:按复利计算利息一个储蓄,本金为,a,元,每期利率为,r,,存期为,n,,则本利和,y,a,(1,r,),n,.,(3),银行储蓄单利公式:利息按单利计算,本金为,a,元,每期利率为,r,,存期为,n,,则本利和,y,a,(1,nr,).,(4),分期付款模型:,a,为贷款总额,,r,为年利率,,b,为等额还款数,则,b,.,32/49,跟踪演练,3,(,全国,),几位大学生响应国家创业号召,开发了一款应用软件,.,为激发大家学习数学兴趣,他们推出了,“,解数学题获取软件激活码,”,活动,.,这款软件激活码为下面数学问题答案:已知数列,1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,,,,其中第一项是,2,0,,接下来两项是,2,0,2,1,,再接下来三项是,2,0,2,1,2,2,,依这类推,.,求满足以下条件最小整数,N,:,N,100,且该数列前,N,项和为,2,整数幂,.,那么该款软件激活码是,A.440 B.330 C.220 D.110,答案,解析,33/49,34/49,设,N,是第,n,1,组第,k,项,若要使前,N,项和为,2,整数幂,,35/49,真题押题精练,36/49,真题体验,1.(,浙江,),设数列,a,n,前,n,项和为,S,n,.,若,S,2,4,,,a,n,1,2,S,n,1,,,n,N,*,,则,a,1,_,,,S,5,_.,1,答案,解析,1,2,121,37/49,1,2,当,n,2,时,由已知可得,a,n,1,2,S,n,1,,,a,n,2,S,n,1,1,,,由,,得,a,n,1,a,n,2,a,n,,,a,n,1,3,a,n,,又,a,2,3,a,1,,,a,n,是以,a,1,1,为首项,以,q,3,为公比等比数列,.,38/49,2.(,山东,),已知,x,n,是各项均为正数等比数列,且,x,1,x,2,3,,,x,3,x,2,2.,(1),求数列,x,n,通项公式;,解,设数列,x,n,公比为,q,.,1,2,所以,3,q,2,5,q,2,0,,,由已知得,q,0,,,所以,q,2,,,x,1,1.,所以数列,x,n,通项公式为,x,n,2,n,1,.,解答,39/49,(2),如图,在平面直角坐标系,xOy,中,依次连接点,P,1,(,x,1,1),,,P,2,(,x,2,2),,,,,P,n,1,(,x,n,1,,,n,1),得到折线,P,1,P,2,P,n,1,,求由该折线与直线,y,0,,,x,x,1,,,x,x,n,1,所围成区域面积,T,n,.,1,2,解答,40/49,解,过,P,1,,,P,2,,,,,P,n,1,向,x,轴作垂线,垂足分别为,Q,1,,,Q,2,,,,,Q,n,1,.,由,(1),得,x,n,1,x,n,2,n,2,n,1,2,n,1,,,记梯形,P,n,P,n,1,Q,n,1,Q,n,面积为,b,n,,,1,2,所以,T,n,b,1,b,2,b,n,3,2,1,5,2,0,7,2,1,(2,n,1),2,n,3,(2,n,1),2,n,2,,,则,2,T,n,3,2,0,5,2,1,7,2,2,(2,n,1),2,n,2,(2,n,1),2,n,1,,,由,,得,41/49,T,n,3,2,1,(2,2,2,2,n,1,),(2,n,1),2,n,1,1,2,42/49,押题预测,解答,押题依据,本题综合考查数列知识,考查反证法数学方法及逻辑推理能力,.,已知数列,a,n,前,n,项和,S,n,满足关系式,S,n,ka,n,1,,,k,为不等于,0,常数,.,(1),试判断数列,a,n,是否为等比数列;,押题依据,43/49,解,若数列,a,n,是等比数列,则由,n,1,得,a,1,S,1,ka,2,,从而,a,2,ka,3,.,又取,n,2,得,a,1,a,2,S,2,ka,3,,,于是,a,1,0,,显然矛盾,故数列,a,n,不是等比数列,.,44/49,解答,押题依据,本题综合考查数列知识,高考热点问题,即数列与不等式完美结合,其中将求数列前,n,项和惯用方法,“,裂项相消法,”,与,“,错位相减法,”,结合在一起,考查了综合分析问题、处理问题能力,.,押题依据,45/49,从而,S,n,a,n,1,.,当,n,2,时,由,S,n,1,a,n,,得,a,n,S,n,S,n,1,a,n,1,a,n,,,即,a,n,1,2,a,n,,此时数列是首项为,a,2,、公比为,2,等比数列,.,从而其前,n,项和,S,n,2,n,2,(,n,N,*,).,46/49,解答,47/49,解,由,得,b,n,n,2,,,记,C,2,12,1,22,0,n,2,n,2,,,则,2,C,2,12,0,22,1,n,2,n,1,,,48/49,即,n,2,n,900,,因为,n,N,*,,故,n,9,,,从而最小正整数,n,值是,10.,49/49,
展开阅读全文