收藏 分销(赏)

2019届江苏专用高考数学大一轮复习第六章数列6.3等比数列及其前n项和讲义理苏教版.ppt

上传人:鼓*** 文档编号:12549678 上传时间:2025-10-28 格式:PPT 页数:53 大小:16.07MB 下载积分:8 金币
下载 相关 举报
2019届江苏专用高考数学大一轮复习第六章数列6.3等比数列及其前n项和讲义理苏教版.ppt_第1页
第1页 / 共53页
2019届江苏专用高考数学大一轮复习第六章数列6.3等比数列及其前n项和讲义理苏教版.ppt_第2页
第2页 / 共53页


点击查看更多>>
资源描述
,6.3,等比数列及其前,n,项和,基础知识自主学习,课时作业,题型分类深度剖析,内容索引,基础知识自主学习,1.,等比数列的定义,一般地,如果一个数列,_,,那么这个数列叫做等比数列,这个常数叫做等比数列的,,,通常用字母,表示,(,q,0).,2.,等比数列的通项公式,设等比数列,a,n,的首项为,a,1,,公比为,q,,则它的通项,a,n,.,3.,等比中项,如果在,a,与,b,中间插入一个数,G,,使,a,,,G,,,b,成等比数列,那么,G,叫做,a,与,b,的,.,知识梳理,从第二项起,每一项与它的前一项的比都等于同,一个常数,公比,q,a,1,q,n,1,等比中项,4.,等比数列的常用性质,(1),通项公式的推广:,a,n,a,m,(,n,,,m,N,*,).,(2),若,a,n,为等比数列,且,k,l,m,n,(,k,,,l,,,m,,,n,N,*,),,则,.,(3),若,a,n,,,b,n,(,项数相同,),是等比数列,则,a,n,(,0),,,仍是等比数列,.,5.,等比数列的前,n,项和公式,等比数列,a,n,的公比为,q,(,q,0),,其前,n,项和为,S,n,,,当,q,1,时,,S,n,na,1,;,当,q,1,时,,S,n,q,n,m,a,k,a,l,a,m,a,n,6.,等比数列前,n,项和的性质,公比不为,1,的等比数列,a,n,的前,n,项和为,S,n,,则,S,n,,,S,2,n,S,n,,,S,3,n,S,2,n,仍成等比数列,其公比为,.,q,n,等比数列,a,n,的单调性,(4),当,q,0),,由正项等比数列,a,n,满足,a,2 015,2,a,2 013,a,2 014,,,可得,a,2 013,q,2,2,a,2 013,a,2 013,q,,,q,2,q,2,0,,,q,0,,,q,2.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,10.(2016,苏锡常镇一调,),设数列,a,n,是首项为,1,,公差不为零的等差数列,,S,n,为其前,n,项和,若,S,1,,,S,2,,,S,4,成等比数列,则数列,a,n,的公差为,_.,设公差为,d,,其中,d,0,,则,S,1,,,S,2,,,S,4,分别为,1,2,d,4,6,d,.,由,S,1,,,S,2,,,S,4,成等比数列,得,(2,d,),2,4,6,d,,,即,d,2,2,d,.,因为,d,0,,所以,d,2.,答案,解析,2,1,2,3,4,5,6,7,8,9,10,11,12,13,14,*11.(2016,苏北四市期末,),已知各项均为正数的数列,a,n,的首项,a,1,1,,,S,n,是数列,a,n,的前,n,项和,且满足,a,n,S,n,1,a,n,1,S,n,a,n,a,n,1,a,n,a,n,1,(,0,,,n,N,*,).,(1),若,a,1,,,a,2,,,a,3,成等比数列,求实数,的值;,解答,令,n,1,,得,a,2,.,令,n,2,,得,a,2,S,3,a,3,S,2,a,2,a,3,a,2,a,3,,,因为,0,,所以,1.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,(2),若,,求,S,n,.,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,14,当,时,,a,n,S,n,1,a,n,1,S,n,a,n,a,n,1,a,n,a,n,1,,,所以数列,是以,2,为首项,,为公差的等差数列,,当,n,2,时,,S,n,1,1,(,1),a,n,1,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,1,2,3,4,5,6,7,8,9,10,11,12,13,14,12.,已知,a,n,是首项为,1,,公差为,2,的等差数列,,S,n,表示,a,n,的前,n,项和,.,(1),求,a,n,及,S,n,;,因为,a,n,是首项,a,1,1,,公差,d,2,的等差数列,,所以,a,n,a,1,(,n,1),d,2,n,1.,故,S,n,1,3,(2,n,1),解答,1,2,3,4,5,6,7,8,9,10,11,12,13,14,(2),设,b,n,是首项为,2,的等比数列,公比,q,满足,q,2,(,a,4,1),q,S,4,0,,求,b,n,的通项公式及其前,n,项和,T,n,.,由,(1),得,a,4,7,,,S,4,16.,因为,q,2,(,a,4,1),q,S,4,0,,即,q,2,8,q,16,0,,,所以,(,q,4),2,0,,从而,q,4.,又因为,b,1,2,,,b,n,是公比,q,4,的等比数列,,所以,b,n,b,1,q,n,1,24,n,1,2,2,n,1,.,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,14,13.(2016,全国丙卷,),已知各项都为正数的数列,a,n,满足,a,1,1,,,(2,a,n,1,1),a,n,2,a,n,1,0.,(1),求,a,2,,,a,3,;,解答,(2),求,a,n,的通项公式,.,解答,由,(2,a,n,1,1),a,n,2,a,n,1,0,,得,2,a,n,1,(,a,n,1),a,n,(,a,n,1).,因为,a,n,的各项都为正数,所以,故,a,n,是首项为,1,,公比为,的等比数列,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,14.,已知数列,a,n,中,,a,1,1,,,a,n,a,n,1,,记,T,2,n,为,a,n,的前,2,n,项的和,,b,n,a,2,n,a,2,n,1,,,n,N,*,.,(1),判断数列,b,n,是否为等比数列,并求出,b,n,;,解答,a,n,a,n,1,,,a,n,1,a,n,2,,,b,n,a,2,n,a,2,n,1,,,a,1,1,,,a,1,a,2,,,a,2,b,1,a,1,a,2,.,b,n,是首项为,,公比为,的等比数列,.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,(2),求,T,2,n,.,解答,由,(1),可知,,a,n,2,,,a,1,,,a,3,,,a,5,,,是以,a,1,1,为首项,以,为公比的等比数列;,a,2,,,a,4,,,a,6,,,是以,a,2,为首项,以,为公比的等比数列,,T,2,n,(,a,1,a,3,a,2,n,1,),(,a,2,a,4,a,2,n,),1,2,3,4,5,6,7,8,9,10,11,12,13,14,
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 考试专区 > 高考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服