收藏 分销(赏)

2024年陕西省中考数学真题试卷(含答案).docx

上传人:优****虫 文档编号:12502361 上传时间:2025-10-21 格式:DOCX 页数:32 大小:475.84KB 下载积分:5 金币
下载 相关 举报
2024年陕西省中考数学真题试卷(含答案).docx_第1页
第1页 / 共32页
2024年陕西省中考数学真题试卷(含答案).docx_第2页
第2页 / 共32页


点击查看更多>>
资源描述
2024年陕西省初中学业水平考试 数 学 试 卷 注意事项: 1.本试卷分为第一部分(选择题)和第二部分(非选择题),全卷共8页,总分120分,考试时间120分钟 2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B铅笔在答题卡上填涂对应的试卷类型信息点(A或B) 3.请在答题卡上各题的指定区域内作答,否则作答无效 4.作图时,先用铅笔作图,再用规定签字笔描黑 5.考试结束,本试卷和答题卡一并交回 第一部分(选择题 共24分) 一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的) 1. 的倒数是( ) A. B. C. D. 2. 如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是( ) A. B. C. D. 3. 如图,,,,则的度数为( ) A. B. C. D. 4. 不等式解集是( ) A. B. C. D. 5. 如图,在中,,是边上的高,E是的中点,连接,则图中的直角三角形有( ) A. 2个 B. 3个 C. 4个 D. 5个 6. 一个正比例函数的图象经过点和点,若点A与点B关于原点对称,则这个正比例函数的表达式为 ( ) A. B. C. D. 7. 如图,正方形的顶点G在正方形的边上,与交于点H,若,,则的长为( ) A. 2 B. 3 C. D. 8. 已知一个二次函数的自变量x与函数y的几组对应值如下表, x … 0 3 5 … y … 0 … 则下列关于这个二次函数的结论正确的是(    ) A. 图象的开口向上 B. 当时,y的值随x的值增大而增大 C. 图象经过第二、三、四象限 D. 图象的对称轴是直线 第二部分(非选择题 共96分) 二、填空题(共5小题,每小题3分,计15分) 9. 分解因式:=_______________. 10. 小华探究“幻方”时,提出了一个问题:如图,将0,,,1,2这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是________.(写出一个符合题意的数即可) 11. 如图,是弦,连接,,是所对的圆周角,则与的和的度数是________. 12. 已知点和点均在反比例函数的图象上,若,则________0. 13. 如图,在中,,E是边上一点,连接,在右侧作,且,连接.若,,则四边形的面积为________. 三、解答题(共13小题,计81分。解答题应写出过程) 14. 计算:. 15. 先化简,再求值:,其中,. 16 解方程:. 17. 如图,已知直线l和l外一点A,请用尺规作图法,求作一个等腰直角,使得顶点B和顶点C都在直线l上.(作出符合题意一个等腰直角三角形即可,保留作图痕迹,不写作法) 18. 如图,四边形是矩形,点E和点F在边上,且.求证:. 19. 一个不透明的袋子中共装有五个小球,其中3个红球,1个白球,1个黄球,这些小球除颜色外都相同.将袋中小球摇匀,从中随机摸出一个小球记下颜色后放回,记作随机摸球一次. (1)随机摸球10次,其中摸出黄球3次,则这10次摸球中,摸出黄球的频率是________. (2)随机摸球2次,用画树状图或列表的方法,求这两次摸出的小球都是红球的概率. 20. 星期天,妈妈做饭,小峰和爸爸进行一次家庭卫生大扫除.根据这次大扫除的任务量,若小峰单独完成,需;若爸爸单独完成,需.当天,小峰先单独打扫了一段时间后,去参加篮球训练,接着由爸爸单独完成剩余的打扫任务.小峰和爸爸这次一共打扫了,求这次小峰打扫了多长时间. 21. 如图所示,一座小山顶的水平观景台的海拔高度为,小明想利用这个观景台测量对面山顶C点处的海拔高度,他在该观景台上选定了一点A,在点A处测得C点的仰角,再在上选一点B,在点B处测得C点的仰角,.求山顶C点处的海拔高度.(小明身高忽略不计,参考数据:,,) 22. 我国新能源汽车快速健康发展,续航里程不断提升,王师傅驾驶一辆纯电动汽车从A市前往B市,他驾车从A市一高速公路入口驶入时,该车的剩余电量是,行驶了后,从B市一高速公路出口驶出,已知该车在高速公路上行驶的过程中,剩余电量与行驶路程之间的关系如图所示. (1)求y与x之间的关系式; (2)已知这辆车“满电量”为,求王师傅驾车从B市这一高速公路出口驶出时,该车的剩余电量占“满电量”的百分之多少. 23. 水资源问题是全球关注的热点,节约用水已成为全民共识.某校课外兴趣小组想了解居民家庭用水情况,他们从一小区随机抽取了30户家庭,收集了这30户家庭去年7月份的用水量,并对这30个数据进行整理,绘制了如下统计图表: 组别 用水量 组内平均数 A B C D 根据以上信息,解答下列问: (1)这30个数据的中位数落在________组(填组别); (2)求这30户家庭去年7月份的总用水量; (3)该小区有1000户家庭,若每户家庭今年7月份的用水量都比去年7月份各自家庭的用水量节约,请估计这1000户家庭今年7月份的总用水量比去年7月份的总用水量节约多少? 24. 如图,直线l与相切于点A,是的直径,点C,D在l上,且位于点A两侧,连接,分别与交于点E,F,连接. (1)求证:; (2)若的半径,,,求的长. 25. 一条河上横跨着一座宏伟壮观的悬索桥.桥梁的缆索与缆索均呈抛物线型,桥塔与桥塔均垂直于桥面,如图所示,以O为原点,以直线为x轴,以桥塔所在直线为y轴,建立平面直角 坐标系. 已知:缆索所在抛物线与缆索所在抛物线关于y轴对称,桥塔与桥塔之间的距离,,缆索的最低点P到的距离(桥塔的粗细忽略不计) (1)求缆索所在抛物线的函数表达式; (2)点E在缆索上,,且,,求的长. 26. 问题提出 (1)如图1,在中,,,作的外接圆.则的长为________;(结果保留π) 问题解决 (2)如图2所示,道路的一侧是湿地.某生态研究所在湿地上建有观测点D,E,C,线段和为观测步道,其中点A和点B为观测步道出入口,已知点E在上,且,,,,,现要在湿地上修建一个新观测点P,使.再在线段上选一个新的步道出入口点F,并修通三条新步道,使新步道经过观测点E,并将五边形的面积平分. 请问:是否存在满足要求的点P和点F?若存在,求此时的长;若不存在,请说明理由.(点A,B,C,P,D在同一平面内,道路与观测步道的宽、观测点及出入口的大小均忽略不计,结果保留根号) 2024年陕西省初中学业水平考试 数 学 试 卷 注意事项: 1.本试卷分为第一部分(选择题)和第二部分(非选择题),全卷共8页,总分120分,考试时间120分钟 2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B铅笔在答题卡上填涂对应的试卷类型信息点(A或B) 3.请在答题卡上各题的指定区域内作答,否则作答无效 4.作图时,先用铅笔作图,再用规定签字笔描黑 5.考试结束,本试卷和答题卡一并交回 第一部分(选择题 共24分) 一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的) 1. 的倒数是( ) A. B. C. D. 【答案】C 【解析】 【分析】由互为倒数的两数之积为1,即可求解. 【详解】解:∵, ∴的倒数是. 故选C 2. 如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是( ) A. B. C. D. 【答案】C 【解析】 【分析】本题主要考查了点、线、面、体问题.根据旋转体的特征判断即可. 【详解】解:将一个半圆绕它的直径所在的直线旋转一周得到的几何体是球, 故选:C. 3. 如图,,,,则的度数为( ) A. B. C. D. 【答案】B 【解析】 【分析】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.先根据“两直线平行,同旁内角互补”,得到,再根据“两直线平行,内错角相等”,即可得到答案. 【详解】, , , , , . 故选B. 4. 不等式的解集是( ) A. B. C. D. 【答案】D 【解析】 【分析】本题主要考查解一元一次不等式.通过去括号,移项,合并同类项,未知数系数化为1,即可求解. 【详解】解:, 去括号得:, 移项合并得:, 解得:, 故选:D. 5. 如图,在中,,是边上的高,E是的中点,连接,则图中的直角 三角形有( ) A. 2个 B. 3个 C. 4个 D. 5个 【答案】C 【解析】 【分析】本题主要考查直角三角形的概念.根据直角三角形的概念可以直接判断. 【详解】解:由图得,,,为直角三角形, 共有4个直角三角形. 故选:C. 6. 一个正比例函数的图象经过点和点,若点A与点B关于原点对称,则这个正比例函数的表达式为 ( ) A. B. C. D. 【答案】A 【解析】 【分析】本题考查正比例函数的图象,坐标与中心对称,根据关于原点对称的两个点的横纵坐标均互为相反数,求出的坐标,进而利用待定系数法求出函数表达式即可. 【详解】解:∵点A与点B关于原点对称, ∴, ∴,, 设正比例函数的解析式为:,把代入,得:, ∴; 故选A. 7. 如图,正方形的顶点G在正方形的边上,与交于点H,若,,则的长为( ) A. 2 B. 3 C. D. 【答案】B 【解析】 【分析】本题考查了相似三角形的判定和性质,正方形的性质.证明,利用相似三角形的性质列式计算即可求解. 【详解】解:∵正方形,, ∴, ∵正方形,, ∴, ∴, 由题意得, ∴, ∴,即, 解得, 故选:B. 8. 已知一个二次函数的自变量x与函数y的几组对应值如下表, x … 0 3 5 … y … 0 … 则下列关于这个二次函数的结论正确的是(    ) A. 图象开口向上 B. 当时,y的值随x的值增大而增大 C. 图象经过第二、三、四象限 D. 图象的对称轴是直线 【答案】D 【解析】 【分析】本题考查了待定系数法求二次函数解析式,二次函数的性质.先利用待定系数法求得二次函数解析式,再根据二次函数的性质逐一判断即可. 【详解】解:由题意得,解得, ∴二次函数的解析式为, ∵, ∴图象的开口向下,故选项A不符合题意; 图象的对称轴是直线,故选项D符合题意; 当时,y的值随x的值增大而增大,当时,y的值随x的值增大而减小,故选项B不符合题意; ∵顶点坐标为且经过原点,图象的开口向下, ∴图象经过第一、三、四象限,故选项C不符合题意; 故选:D. 第二部分(非选择题 共96分) 二、填空题(共5小题,每小题3分,计15分) 9. 分解因式:=_______________. 【答案】a(a﹣b). 【解析】 【详解】解:=a(a﹣b). 故答案为a(a﹣b). 【点睛】本题考查因式分解-提公因式法. 10. 小华探究“幻方”时,提出了一个问题:如图,将0,,,1,2这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是________.(写出一个符合题意的数即可) 【答案】0 【解析】 【分析】本题考查有理数的运算,根据横向三个数之和与纵向三个数之和相等,进行填写即可得出结果. 【详解】解:由题意,填写如下: ,满足题意; 故答案为:0. 11. 如图,是的弦,连接,,是所对的圆周角,则与的和的度数是________. 【答案】##90度 【解析】 【分析】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理,熟练掌握圆周角定理是解题的关键.根据圆周角定理可得,结合三角形内角和定理,可证明,再根据等腰三角形的性质可知,由此即得答案. 【详解】是所对的圆周角,是所对的圆心角, , , , , , , , . 故答案为:. 12. 已知点和点均在反比例函数的图象上,若,则________0. 【答案】##小于 【解析】 【分析】本题主要考查了反比例函数的性质,先求出,,再根据,得出,最后求出即可. 【详解】解:∵点和点均在反比例函数的图象上, ∴,, ∵, ∴, ∴. 故答案为:. 13. 如图,在中,,E是边上一点,连接,在右侧作,且,连接.若,,则四边形的面积为________. 【答案】60 【解析】 【分析】本题考查等边对等角,平行线的性质,角平分线的性质,勾股定理:过点作,,根据等边对等角结合平行线的性质,推出,进而得到,得到,进而得到四边形的面积等于,设,勾股定理求出的长,再利用面积公式求出的面积即可. 【详解】解:∵, ∴, ∵, ∴, ∴, ∴平分, 过点作,, 则:, ∵,且, ∴, ∴四边形的面积, ∵, ∴, 设,则:, 由勾股定理,得:, ∴, 解:, ∴, ∴, ∴四边形的面积为60. 故答案为:60. 三、解答题(共13小题,计81分。解答题应写出过程) 14. 计算:. 【答案】 【解析】 【分析】本题考查了实数的运算.根据算术平方根、零次幂、有理数的乘法运算法则计算即可求解. 【详解】解: . 15 先化简,再求值:,其中,. 【答案】,6 【解析】 【分析】本题考查了整式的混合运算以及求值.根据完全平方公式和单项式乘以多项式法则进行运算,再合并同类项,最后代入即可求解. 【详解】解: ; 当,时, 原式. 16. 解方程:. 【答案】 【解析】 【分析】本题主要考查了解分式方程,先去分母变分式方程为整式方程,然后再解整式方程,最后对方程的解进行检验即可. 【详解】解:, 去分母得:, 去括号得:, 移项,合并同类项得:, 检验:把代入得:, ∴是原方程的解. 17. 如图,已知直线l和l外一点A,请用尺规作图法,求作一个等腰直角,使得顶点B和顶点C都在直线l上.(作出符合题意的一个等腰直角三角形即可,保留作图痕迹,不写作法) 【答案】见解析 【解析】 【分析】本题考查了等腰直角三角形的定义,尺规作图.过点A作,垂足为,再在直线l上截取点C,使,连接,则是所求作的等腰直角三角形. 【详解】解:等腰直角如图所示: 18. 如图,四边形是矩形,点E和点F在边上,且.求证:. 【答案】见解析 【解析】 【分析】本题考查了矩形的性质,全等三角形的判定和性质.根据矩形的性质得到,,再推出,利用证明,即可得到. 【详解】证明:∵四边形是矩形, ∴,, ∵, ∴,即, ∴, ∴. 19. 一个不透明的袋子中共装有五个小球,其中3个红球,1个白球,1个黄球,这些小球除颜色外都相 同.将袋中小球摇匀,从中随机摸出一个小球记下颜色后放回,记作随机摸球一次. (1)随机摸球10次,其中摸出黄球3次,则这10次摸球中,摸出黄球的频率是________. (2)随机摸球2次,用画树状图或列表方法,求这两次摸出的小球都是红球的概率. 【答案】(1)0.3 (2) 【解析】 【分析】(1)根据“频数除以总数等于频率”求解即可; (2)画出树状图可得,共有25种等可能的结果,其中两次摸出的小球都是红球有9种结果,再利用概率公式求解即可. 小问1详解】 解:由题意得,摸出黄球的频率是, 故答案为:0.3; 【小问2详解】 解:画树状图得, 共有25种等可能的结果,其中两次摸出的小球都是红球有9种结果, ∴两次摸出的小球都是红球的概率为. 【点睛】本题考查求频率的公式、画树状图或列表法求概率、概率公式,熟练掌握画树状图或列表法求概率的方法是解题的关键. 20. 星期天,妈妈做饭,小峰和爸爸进行一次家庭卫生大扫除.根据这次大扫除的任务量,若小峰单独完成,需;若爸爸单独完成,需.当天,小峰先单独打扫了一段时间后,去参加篮球训练,接着由爸爸单独完成剩余的打扫任务.小峰和爸爸这次一共打扫了,求这次小峰打扫了多长时间. 【答案】小峰打扫了. 【解析】 【分析】本题是一道工程问题的应用题.设小峰打扫了,爸爸打扫了,根据总工作量=各部分的工作量之和列出一元一次方程,然后求解即可. 【详解】解:设总工作量为1,小峰打扫了,爸爸打扫了,则小峰打扫任务的工作效率为,爸爸打扫任务的工作效率为, 由题意,得:, 解得:, 答:小峰打扫了. 21. 如图所示,一座小山顶的水平观景台的海拔高度为,小明想利用这个观景台测量对面山顶C点处的海拔高度,他在该观景台上选定了一点A,在点A处测得C点的仰角,再在上选一点B,在点B处测得C点的仰角,.求山顶C点处的海拔高度.(小明身高忽略不计,参考数据:,,) 【答案】山顶C点处的海拔高度为. 【解析】 【分析】本题考查了解直角三角形应用.过点C作交的延长线于点,在和中,利用三角函数的定义列式计算即可求解. 【详解】解:过点C作交的延长线于点,设, 在中,, ∴, 在中,, ∴, ∵, ∴, 解得, ∴山顶C点处的海拔高度为. 22. 我国新能源汽车快速健康发展,续航里程不断提升,王师傅驾驶一辆纯电动汽车从A市前往B市,他驾车从A市一高速公路入口驶入时,该车的剩余电量是,行驶了后,从B市一高速公路出口驶出,已知该车在高速公路上行驶的过程中,剩余电量与行驶路程之间的关系如图所示. (1)求y与x之间的关系式; (2)已知这辆车的“满电量”为,求王师傅驾车从B市这一高速公路出口驶出时,该车的剩余电量占“满电量”的百分之多少. 【答案】(1)y与x之间的关系式为; (2)该车的剩余电量占“满电量”的. 【解析】 【分析】本题考查了一次函数的应用,正确理解题意、求出函数关系式是解题的关键. (1)利用待定系数法求解即可; (2)先求得当时,y的值,再计算即可求解. 【小问1详解】 解:设y与x之间的关系式为, 将,代入得, 解得, ∴y与x之间的关系式为; 【小问2详解】 解:当时,, , 答:该车的剩余电量占“满电量”的. 23. 水资源问题是全球关注的热点,节约用水已成为全民共识.某校课外兴趣小组想了解居民家庭用水情况, 他们从一小区随机抽取了30户家庭,收集了这30户家庭去年7月份的用水量,并对这30个数据进行整理,绘制了如下统计图表: 组别 用水量 组内平均数 A B C D 根据以上信息,解答下列问: (1)这30个数据的中位数落在________组(填组别); (2)求这30户家庭去年7月份的总用水量; (3)该小区有1000户家庭,若每户家庭今年7月份的用水量都比去年7月份各自家庭的用水量节约,请估计这1000户家庭今年7月份的总用水量比去年7月份的总用水量节约多少? 【答案】(1)B (2) (3) 【解析】 【分析】本题主要考查了求一组数据的中位数,求一组数据的平均数,条形统计图,根据统计图信息得出相应的量,是解题的关键. (1)根据中位数的定义进行求解即可; (2)根据组内平均用水量和组内户数求出这30户家庭去年7月份的总用水量即可; (3)用样本估计总体即可. 【小问1详解】 解:根据条形统计图可知:组有10户,B组有12户,C组有6户,D组有2户, ∴将30个数据从小到大进行排序,排在第15和16的两个数据一定落在B组, ∴这30个数据的中位数落在B组; 【小问2详解】 解:这30户家庭去年7月份的总用水量为: ; 【小问3详解】 解:去年每户家庭7月份的用水量约为:, ∵每户家庭今年7月份的用水量都比去年7月份各自家庭的用水量节约, ∴今年每户家庭7月份的节约用水量约为:, ∴估计这1000户家庭今年7月份的总用水量比去年7月份的总用水量节约: . 24. 如图,直线l与相切于点A,是的直径,点C,D在l上,且位于点A两侧,连接,分别与交于点E,F,连接. (1)求证:; (2)若的半径,,,求的长. 【答案】(1)见解析 (2). 【解析】 【分析】(1)利用切线和直径的性质求得,再利用等角的余角相等即可证明; (2)先求得,,证明和是等腰直角三角形,求得的长,再证明,据此求解即可. 【小问1详解】 证明:∵直线l与相切于点A, ∴, ∴, ∵是的直径, ∴, ∴, ∴; 【小问2详解】 解:∵, ∴,, ∵直线l与相切于点A, ∴, ∴是等腰直角三角形, ∴, ∵是的直径, ∴, ∴也是等腰直角三角形, ∴, ∵, ∴, ∵, ∴, ∴, ∴,即, ∴. 【点睛】本题考查的是等腰三角形的性质和判定,相似三角形的性质和判定,切线的性质,勾股定理等知识点的应用,掌握切线的性质定理、相似三角形的判定定理和性质定理是解题的关键. 25. 一条河上横跨着一座宏伟壮观的悬索桥.桥梁的缆索与缆索均呈抛物线型,桥塔与桥塔均垂直于桥面,如图所示,以O为原点,以直线为x轴,以桥塔所在直线为y轴,建立平面直角坐标系. 已知:缆索所在抛物线与缆索所在抛物线关于y轴对称,桥塔与桥塔之间的距离,,缆索的最低点P到的距离(桥塔的粗细忽略不计) (1)求缆索所在抛物线的函数表达式; (2)点E在缆索上,,且,,求的长. 【答案】(1); (2)的长为. 【解析】 【分析】本题考查了二次函数的应用,待定系数法求二次函数解析式,根据题意求得函数解析式是解题的关键. (1)根据题意设缆索所在抛物线的函数表达式为,把代入求解即可; (2)根据轴对称的性质得到缆索所在抛物线的函数表达式为,由,把代入求得,,据此求解即可. 【小问1详解】 解:由题意得顶点P的坐标为,点A的坐标为, 设缆索所在抛物线的函数表达式为, 把代入得, 解得, ∴缆索所在抛物线的函数表达式为; 【小问2详解】 解:∵缆索所在抛物线与缆索所在抛物线关于y轴对称, ∴缆索所在抛物线的函数表达式为, ∵, ∴把代入得,, 解得,, ∴或, ∵, ∴的长为. 26. 问题提出 (1)如图1,在中,,,作的外接圆.则的长为________;(结果保留π) 问题解决 (2)如图2所示,道路的一侧是湿地.某生态研究所在湿地上建有观测点D,E,C,线段和为观测步道,其中点A和点B为观测步道出入口,已知点E在上,且,,,,,现要在湿地上修建一个新观测点P,使.再在线段上选一个新的步道出入口点F,并修通三条新步道,使新步道经过观测点E,并将五边形的面积平分. 请问:是否存在满足要求的点P和点F?若存在,求此时的长;若不存在,请说明理由.(点A,B,C,P,D在同一平面内,道路与观测步道的宽、观测点及出入口的大小均忽略不计,结果保留根号) 【答案】(1);(2)存在满足要求的点P和点F,此时的长为. 【解析】 【分析】(1)连接,证明等边三角形,再利用弧长公式计算即可求解; (2)点P在以为圆心,圆心角为的圆上,如图,由题意知直线必经过的中点,得到四 边形是平行四边形,求得,作于点,解直角三角形求得和的长,再证明,利用相似三角形的性质求得,据此求解即可. 【详解】解:(1)连接, ∵, ∴, ∵, ∴等边三角形, ∵, ∴, ∴的长为; 故答案为:; (2)存在满足要求的点P和点F,此时的长为.理由如下, 解:∵,, ∴, ∴, ∵, ∴四边形是平行四边形, ∵要在湿地上修建一个新观测点P,使, ∴点P在以为圆心,为弦,圆心角为的圆上,如图, ∵, ∴经过点的直线都平分四边形的面积, ∵新步道经过观测点E,并将五边形的面积平分, ∴直线必经过的中点, ∴是的中位线, ∴, ∵,, ∴四边形是平行四边形, ∴, 作于点, ∵四边形是平行四边形,, ∴, ∵, ∴,, ∵, ∴, ∴,即, ∴, 在中,, ∴. 答:存在满足要求的点P和点F,此时的长为. 【点睛】本题考查了圆周角定理,解直角三角形,平行四边形的判定和性质,勾股定理,相似三角形的判定和性质,正确引出辅助线解决问题是解题的关键.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服