1、八年级数学上册 总复习提纲 第十一章 三角形11.1.1 与三角形有关的线段一、三角形及有关概念不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。注意:三条线段必须不在一条直线上,首尾顺次相接。组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。、三角形ABC用符号表示为ABC。三角形ABC的顶点C所对的边AB可用c 表示,顶点B所对的边AC可用b表示,顶点A所对的边BC可用a表示.二、三角形三边的不等关系三角形的任意两边之和大于第三边.三、三角形的分类我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三角
2、形、钝角三角形统称为斜三角形。按角分类: 三角形 直角三角形 斜三角形 锐角三角形 钝角三角形三边都相等的三角形叫做等边三角形;有两条边相等的三角形叫做等腰三角形;三边都不相等的三角形叫做不等边三角形。 显然,等边三角形是特殊的等腰三角形。按边分类:三角形 不等边三角形 等腰三角形 底和腰不等的等腰三角形 等边三角形11.1.2 三角形的高、中线与角平分线 一、三角形的高 从ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做ABC的边BC上的高,表示为ADBC于点D。注意:高与垂线不同,高是线段,垂线是直线。三角形的三条高相交于一点。二、三角形的中线我们把连结ABC的顶
3、点A和它的对边BC的中点D,所得线段AD叫做ABC的边BC上的中线,表示为BD=DC或BD=DC1/2BC或2BD=2DC=BC. 三角的三条中线相交于一点。三、三角形的角平分线画A的平分线AD,交A所对的边BC于点D,所得线段AD叫做ABC的角平分线,表示为BAD=CAD或BAD=CAD1/2BAC或2BAD=2CADBAC。 三角形的角平分线是线段,而角的平分线是射线,是不一样的。三角形三个角的平分线相交于一点。三角形的三条中线的交点、三条角平分线的交点在三角形的内部,而锐三角形的三条高的交点在三角形的内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高的交点在三角形的外部。11.
4、1.3三角形的稳定性一、三角形的稳定性三角形具有稳定性,而四边形不具有稳定性。二、三角形稳定性和四边形不稳定的应用三角形具有稳定性固然好,四边形不具有稳定性也未必不好,它们在生产和生活中都有广泛的应用。 11.2.1三角形的内角一、三角形内角定理三角形的内角和等于1800。11.2.2三角形的外角一、三角形外角的概念 三角形一边与另一边的延长线组成的角,叫做三角形的外角。注意:每个顶点处有两个外角,它们是对顶角。研究与三角形外角有关的问题时,通常每个顶点处取一个外角.二、三角形外角的性质三角形的一个外角等于与它不相邻的两个内角之和。三角形的一个外角大于与它不相邻的任何一个内角。1131 多边形
5、 一、多边形及有关概念在平面内,由一些不在同一条直线上的线段首尾顺次相接组成的图形叫做多边形。多边形按组成它的线段的条数分成三角形、四边形、五边形、n边形。这就是说,一个多边形由几条线段组成,就叫做几边形,三角形是最简单的多边形。与三角形类似地,多边形相邻两边组成的角叫做多边形的内角。连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线n边形有1/2n(n3)条对角线。因为从n边形的一个顶点可以引n3条对角线,n个顶点共引n(n3)条对角线,又由于连接任意两个顶点的两条对角线是相同的,所以,n边形有1/2n(n3)条对角线。二、凸多边形和凹多边形 画出四边形ABCD的任何一条边所在的直线,整
6、个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形。注意:今后我们讨论的多边形指的都是凸多边形三、正多边形的概念我们知道,等边三角形、正方形的各个角都相等,各条边都相等,像这样各个角都相等,各条边都相等的多边形叫做正多边形。 1132 多边形的内角和一、多边形的内角和 n边形的内角和等于(n一2)180 n边形的外角和等于360。一、知识结构三角形与三角形有关的线段三角形的内角和三角形的外角和高中线角平分线多边形的内角和多边形的外角和第十二章全等三角形一、全等三角形1定义:能够完全重合的两个三
7、角形叫做全等三角形。2全等三角形的性质全等三角形的对应边相等、对应角相等。全等三角形的周长相等、面积相等。全等三角形的对应边上的对应中线、角平分线、高线分别相等。3全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4证明两个三角形全等的基本思路:二、角的平分线:1(性质)角的平分线上的
8、点到角的两边的距离相等2(判定)角的内部到角的两边的距离相等的点在角的平分线上三、学习全等三角形应注意以下几个问题:1要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;3有三个角对应相等或有两边及其中一边的对角对应相等的两个三角形不一定全等;4时刻注意图形中的隐含条件,如 “公共角” 、“公共边”、“对顶角” 第十三章 轴对称一、轴对称图形1把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线成轴对称。2把一个图形沿着某一条直
9、线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称,这条直线叫做对称轴。折叠后重合的点是对应点,也叫做对称点3轴对称图形和轴对称的区别与联系 轴对称图形轴对称图形区别轴对称图形是指一个图形而言;对称轴不一定只有一条轴对称是指两个图形的位置关系,必须涉及两个图形;只有一条对称轴联系如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线成轴对称如果把两个成轴对称的图形拼在一起看成一个整体,那么它就是一个轴对称图形4轴对称的性质关于某直线对称的两个图形是全等形。 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。轴对称图形的对称轴,是任何一对
10、对应点所连线段的垂直平分线。如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。二、线段的垂直平分线1定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。2性质:线段垂直平分线上的点到这条线段的两个端点的距离相等; 到线段两个端点距离相等的点,在线段的垂直平分线上。3三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等三、用坐标表示轴对称 点(x, y)关于x轴对称的点的坐标为_;点(x, y)关于y轴对称的点的坐标为_。四、等腰三角形1.等腰三角形的性质.等腰三角形的两个底角相等(等边对等角).等腰三角形的顶角平分线、底边上的中线、底
11、边上的高互相重合(三线合一)2.等腰三角形的判定:有两条边相等的三角形是等腰三角形两个角相等的三角形是等腰三角形(等角对等边)五、等边三角形1等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于6002等边三角形的判定:三条边都相等的三角形是等边三角形三个角都相等的三角形是等边三角形有一个角是600的等腰三角形是等边三角形3在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半 第十四章 整式乘除与因式分解一、幂的运算性质:1同底数幂相乘,底数不变,指数相加,即(、为正整数)2幂的乘方,底数不变,指数相乘,即(、为正整数)3积的乘方等于各因式乘方的积,即(n为正整数
12、)4同底数幂相除,底数不变,指数相减,即( 、都是正整数,且)5零指数幂的概念:任何一个不等于零的数的零指数幂都等于,即二、整式的乘法1单项式与单项式乘法法则:把系数、同底数幂分别相乘,作为积的因式,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式2单项式与多项式的乘法法则:用单项式与多项式的每一项分别相乘,再把所得的积相加3多项式与多项式的乘法法则:先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加4乘法公式:平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差,即;完全平方公式:两数和(或差)的平方等于它们的平方和,加(或减)它们的积的2倍,即。三、
13、整式的除法1单项式除以单项式法则:把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。2多项式除以单项式的法则:先把这个多项式的每一项除以这个单项式,再把所得的商相加。四、因式分解:1因式分解的定义:把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解。 掌握其定义应注意以下几点: 分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;因式分解必须是恒等变形; 因式分解必须分解到每个因式都不能分解为止。2弄清因式分解与整式乘法的内在的关系因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而
14、整式乘法是把积化为和差的形式。 3熟练掌握因式分解的常用方法(1)提公因式法提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:A系数各项系数的最大公约数;B字母各项含有的相同字母;C指数相同字母的最低次数。提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项注意点:A提取公因式后各因式应该是最简形式,即分解到“底”;B如果多项式的第一项的系数是负的,一般要提出“”号,使括号内的第一项的系数是正的。(2)公式法(运用公式法分解因式的实质是把整式中的乘法公式反过来使用)平方差公式
15、:完全平方公式:(3)十字相乘:4添括号时,如果括号前面是正号,括号里的各项都不变符号;如果括号前面时负号,括号里的各项都改变符号. 第十五章分式 1.分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。 ()3.分式的通分和约分:关键先是分解因式4.分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。 分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 分式乘方法则: 分式乘方要
16、把分子、分母分别乘方。 分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。异分母的分式相加减,先通分,变为同分母分式,然后再加减混合运算:运算顺序和以前一样。能用运算率简算的可用运算率简算。5. 任何一个不等于零的数的零次幂等于1, 即;当n为正整数时, (6.正整数指数幂运算性质也可以推广到整数指数幂(m,n是整数)(1)同底数的幂的乘法:;(2)幂的乘方:;(3)积的乘方:;(4)同底数的幂的除法:( a0);(5)商的乘方:();(b0)7. 分式方程:含分式,并且分母中含未知数的方程分式方程。解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整
17、式方程。解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为,这样就产生了增根,因此分式方程一定要验根。解分式方程的步骤 :(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。 分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。 列方程应用题的步骤是什么? (1)审;(2)设;(3)列;(4)解;(5)答应用题有几种类型;基本公式是什么?基本上有五种: (1)行程问题:基本公式:路程=速度时间而行程问题中又分相遇问题、追及问题 (2)数字问题 在数字问题中要掌握十进制数的表示法 (3)工程问题 基本公式:工作量=工时工效 (4)顺水逆水问题 v顺水=v静水+v水 v逆水=v静水-v水8.科学记数法:把一个数表示成的形式(其中,n是整数)的记数方法叫做科学记数法用科学记数法表示绝对值大于10的n位整数时,其中10的指数是用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)4