资源描述
河北省唐山开滦一中2025-2026学年数学高三第一学期期末综合测试模拟试题
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},则M∩N=( )
A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)
2.设向量,满足,,,则的取值范围是
A. B.
C. D.
3.已知函数的图象如图所示,则下列说法错误的是( )
A.函数在上单调递减
B.函数在上单调递增
C.函数的对称中心是
D.函数的对称轴是
4.椭圆是日常生活中常见的图形,在圆柱形的玻璃杯中盛半杯水,将杯体倾斜一个角度,水面的边界即是椭圆.现有一高度为12厘米,底面半径为3厘米的圆柱形玻璃杯,且杯中所盛水的体积恰为该玻璃杯容积的一半(玻璃厚度忽略不计),在玻璃杯倾斜的过程中(杯中的水不能溢出),杯中水面边界所形成的椭圆的离心率的取值范围是( )
A. B. C. D.
5.设为虚数单位,为复数,若为实数,则( )
A. B. C. D.
6.已知全集,集合,则=( )
A. B.
C. D.
7.在平面直角坐标系中,已知点,,若动点满足 ,则的取值范围是( )
A. B.
C. D.
8.在平面直角坐标系中,若不等式组所表示的平面区域内存在点,使不等式成立,则实数的取值范围为( )
A. B. C. D.
9.设是虚数单位,,,则( )
A. B. C.1 D.2
10.已知函数,且),则“在上是单调函数”是“”的( )
A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
11.若复数是纯虚数,则实数的值为( )
A.或 B. C. D.或
12.已知双曲线的一条渐近线为,圆与相切于点,若的面积为,则双曲线的离心率为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知复数,其中为虚数单位,则的模为_______________.
14.已知集合,.若,则实数a的值是______.
15.如图,在长方体中,,E,F,G分别为的中点,点P在平面ABCD内,若直线平面EFG,则线段长度的最小值是________________.
16.已知为椭圆的左、右焦点,点在椭圆上移动时,的内心的轨迹方程为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)设函数.
(1)求不等式的解集;
(2)若的最小值为,且,求的最小值.
18.(12分)已知数列满足.
(1)求数列的通项公式;
(2)设数列的前项和为,证明:.
19.(12分)在正三棱柱ABCA1B1C1中,已知AB=1,AA1=2,E,F,G分别是棱AA1,AC和A1C1的中点,以为正交基底,建立如图所示的空间直角坐标系F-xyz.
(1)求异面直线AC与BE所成角的余弦值;
(2)求二面角F-BC1-C的余弦值.
20.(12分)已知椭圆的上顶点为,圆与轴的正半轴交于点,与有且仅有两个交点且都在轴上,(为坐标原点).
(1)求椭圆的方程;
(2)已知点,不过点且斜率为的直线与椭圆交于两点,证明:直线与直线的斜率互为相反数.
21.(12分)某广告商租用了一块如图所示的半圆形封闭区域用于产品展示,该封闭区域由以为圆心的半圆及直径围成.在此区域内原有一个以为直径、为圆心的半圆形展示区,该广告商欲在此基础上,将其改建成一个凸四边形的展示区,其中、分别在半圆与半圆的圆弧上,且与半圆相切于点.已知长为40米,设为.(上述图形均视作在同一平面内)
(1)记四边形的周长为,求的表达式;
(2)要使改建成的展示区的面积最大,求的值.
22.(10分)在平面直角坐标系中,直线的的参数方程为(其中为参数),以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线经过点.曲线的极坐标方程为.
(1)求直线的普通方程与曲线的直角坐标方程;
(2)过点作直线的垂线交曲线于两点(在轴上方),求的值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.C
【解析】
先化简N={x|x(x+3)≤0}={x|-3≤x≤0},再根据M={x|﹣1<x<2},求两集合的交集.
【详解】
因为N={x|x(x+3)≤0}={x|-3≤x≤0},
又因为M={x|﹣1<x<2},
所以M∩N={x|﹣1<x≤0}.
故选:C
本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.
2.B
【解析】
由模长公式求解即可.
【详解】
,
当时取等号,所以本题答案为B.
本题考查向量的数量积,考查模长公式,准确计算是关键,是基础题.
3.B
【解析】
根据图象求得函数的解析式,结合余弦函数的单调性与对称性逐项判断即可.
【详解】
由图象可得,函数的周期,所以.
将点代入中,得,解得,由,可得,所以.
令,得,
故函数在上单调递减,
当时,函数在上单调递减,故A正确;
令,得,
故函数在上单调递增.
当时,函数在上单调递增,故B错误;
令,得,故函数的对称中心是,故C正确;
令,得,故函数的对称轴是,故D正确.
故选:B.
本题考查由图象求余弦型函数的解析式,同时也考查了余弦型函数的单调性与对称性的判断,考查推理能力与计算能力,属于中等题.
4.C
【解析】
根据题意可知当玻璃杯倾斜至杯中水刚好不溢出时,水面边界所形成椭圆的离心率最大,由椭圆的几何性质即可确定此时椭圆的离心率,进而确定离心率的取值范围.
【详解】
当玻璃杯倾斜至杯中水刚好不溢出时,水面边界所形成椭圆的离心率最大.
此时椭圆长轴长为,短轴长为6,
所以椭圆离心率,
所以.
故选:C
本题考查了橢圆的定义及其性质的简单应用,属于基础题.
5.B
【解析】
可设,将化简,得到,由复数为实数,可得,解方程即可求解
【详解】
设,则.
由题意有,所以.
故选:B
本题考查复数的模长、除法运算,由复数的类型求解对应参数,属于基础题
6.D
【解析】
先计算集合,再计算,最后计算.
【详解】
解:
,
,
.
故选:.
本题主要考查了集合的交,补混合运算,注意分清集合间的关系,属于基础题.
7.D
【解析】
设出的坐标为,依据题目条件,求出点的轨迹方程,
写出点的参数方程,则,根据余弦函数自身的范围,可求得结果.
【详解】
设 ,则
∵,
∴
∴
∴为点的轨迹方程
∴点的参数方程为(为参数)
则由向量的坐标表达式有:
又∵
∴
故选:D
考查学生依据条件求解各种轨迹方程的能力,熟练掌握代数式转换,能够利用三角换元的思想处理轨迹中的向量乘积,属于中档题.求解轨迹方程的方法有:①直接法;②定义法;③相关点法;④参数法;⑤待定系数法
8.B
【解析】
依据线性约束条件画出可行域,目标函数恒过,再分别讨论的正负进一步确定目标函数与可行域的基本关系,即可求解
【详解】
作出不等式对应的平面区域,如图所示:
其中,直线过定点,
当时,不等式表示直线及其左边的区域,不满足题意;
当时,直线的斜率,
不等式表示直线下方的区域,不满足题意;
当时,直线的斜率,
不等式表示直线上方的区域,
要使不等式组所表示的平面区域内存在点,
使不等式成立,只需直线的斜率,解得.
综上可得实数的取值范围为,
故选:B.
本题考查由目标函数有解求解参数取值范围问题,分类讨论与数形结合思想,属于中档题
9.C
【解析】
由,可得,通过等号左右实部和虚部分别相等即可求出的值.
【详解】
解:,
,解得:.
故选:C.
本题考查了复数的运算,考查了复数相等的涵义.对于复数的运算类问题,易错点是把 当成进行运算.
10.C
【解析】
先求出复合函数在上是单调函数的充要条件,再看其和的包含关系,利用集合间包含关系与充要条件之间的关系,判断正确答案.
【详解】
,且),
由得或,
即的定义域为或,(且)
令,其在单调递减,单调递增,
在上是单调函数,其充要条件为
即.
故选:C.
本题考查了复合函数的单调性的判断问题,充要条件的判断,属于基础题.
11.C
【解析】
试题分析:因为复数是纯虚数,所以且,因此注意不要忽视虚部不为零这一隐含条件.
考点:纯虚数
12.D
【解析】
由圆与相切可知,圆心到的距离为2,即.又,由此求出的值,利用离心率公式,求出e.
【详解】
由题意得,,
,.
故选:D.
本题考查了双曲线的几何性质,直线与圆相切的性质,离心率的求法,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13.
【解析】
利用复数模的计算公式求解即可.
【详解】
解:由,得,
所以.
故答案为:.
本题考查复数模的求法,属于基础题.
14.9
【解析】
根据集合交集的定义即得.
【详解】
集合,,,
,则a的值是9.
故答案为:9
本题考查集合的交集,是基础题.
15.
【解析】
如图,连接,证明平面平面EFG.因为直线平面EFG,所以点P在直线AC上. 当时.线段的长度最小,再求此时的得解.
【详解】
如图,连接,
因为E,F,G分别为AB,BC,的中点,
所以,平面,
则平面.因为,
所以同理得平面,又.
所以平面平面EFG.
因为直线平面EFG,所以点P在直线AC上.
在中,,
故当时.线段的长度最小,最小值为.
故答案为:
本题主要考查空间位置关系的证明,考查立体几何中的轨迹问题,意在考查学生对这些知识的理解掌握水平.
16.
【解析】
考查更为一般的问题:设P为椭圆C:上的动点,为椭圆的两个焦点,为△PF1F2的内心,求点I的轨迹方程.
解法一:如图,设内切圆I与F1F2的切点为H,半径为r,且F1H=y,F2H=z,PF1=x+y,PF2=x+z,,则.
直线IF1与IF2的斜率之积:,
而根据海伦公式,有△PF1F2的面积为
因此有.
再根据椭圆的斜率积定义,可得I点的轨迹是以F1F2为长轴,
离心率e满足的椭圆,
其标准方程为.
解法二:令,则.三角形PF1F2的面积:
,
其中r为内切圆的半径,解得.
另一方面,由内切圆的性质及焦半径公式得:
从而有.消去θ得到点I的轨迹方程为:
.
本题中:,代入上式可得轨迹方程为:.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(1)或(2)最小值为.
【解析】
(1)讨论,,三种情况,分别计算得到答案.
(2)计算得到,再利用均值不等式计算得到答案.
【详解】
(1)
当时,由,解得;
当时,由,解得;
当时,由,解得.
所以所求不等式的解集为或.
(2)根据函数图像知:当时,,所以.
因为
,
由,可知,
所以,
当且仅当,,时,等号成立.
所以的最小值为.
本题考查了解绝对值不等式,函数最值,均值不等式,意在考查学生对于不等式,函数知识的综合应用.
18.(1)(2)证明见解析
【解析】
(1),①当时,,②两式相减即得数列的通项公式;(2)先求出,再利用裂项相消法求和证明.
【详解】
(1)解:,①
当时,.
当时,,②
由①-②,得,
因为符合上式,所以.
(2)证明:
因为,所以.
本题主要考查数列通项的求法,考查数列求和,意在考查学生对这些知识的理解掌握水平.
19.(1).(2).
【解析】
(1)先根据空间直角坐标系,求得向量和向量的坐标,再利用线线角的向量方法求解.
(2)分别求得平面BFC1的一个法向量和平面BCC1的一个法向量,再利用面面角的向量方法求解.
【详解】
规范解答 (1) 因为AB=1,AA1=2,则F(0,0,0),A,C,B,E,
所以=(-1,0,0),=
记异面直线AC和BE所成角为α,
则cosα=|cos〈〉|==,
所以异面直线AC和BE所成角的余弦值为.
(2) 设平面BFC1的法向量为= (x1,y1,z1).
因为=,=,
则
取x1=4,得平面BFC1的一个法向量为=(4,0,1).
设平面BCC1的法向量为=(x2,y2,z2).
因为=,=(0,0,2),
则
取x2= 得平面BCC1的一个法向量为=(,-1,0),
所以cos〈〉= =
根据图形可知二面角F-BC1-C为锐二面角,
所以二面角F-BC1-C的余弦值为.
本题主要考查了空间向量法研究空间中线线角,面面角的求法,还考查了转化化归的思想和运算求解的能力,属于中档题.
20.(1)(2)证明见解析
【解析】
(1)根据条件可得,进而得到,即可得到椭圆方程;
(2)设直线的方程为,联立,分别表示出直线和直线斜率,相加利用根与系数关系即可得到.
【详解】
解:(1)圆与有且仅有两个交点且都在轴上,所以,
又,,解得,故椭圆的方程为;
(2)设直线的方程为,联立,整理可得,
则,解得,
设点,,
则,,
所以
,
故直线与直线的斜率互为相反数.
本题考查直线与椭圆的位置关系,涉及椭圆的几何性质,关键是求出椭圆的标准方程,属于中档题.
21.(1),.(2)
【解析】
(1)由余弦定理的,然后根据直线与圆相切的性质求出,从而求出;
(2)求得的表达式,通过求导研究函数的单调性求得最大值.
【详解】
解:(1)连.由条件得.
在三角形中,,,,由余弦定理,得
,
因为与半圆相切于,所以,
所以,所以.
所以四边形的周长为
,.
(2)设四边形的面积为,则
,.
所以,.
令,得
列表:
+
0
-
增
最大值
减
答:要使改建成的展示区的面积最大,的值为.
本题考查余弦定理、直线与圆的位置关系、导数与函数最值的关系,考查考生的逻辑思维能力,运算求解能力,以及函数与方程的思想.
22.(1),;(2)
【解析】
(1)利用代入法消去参数可得到直线的普通方程,利用公式可得到曲线的直角坐标方程;(2)设直线的参数方程为(为参数),
代入得,根据直线参数方程的几何意义,利用韦达定理可得结果.
【详解】
(1)由题意得点的直角坐标为,将点代入得
则直线的普通方程为.
由得,即.
故曲线的直角坐标方程为.
(2)设直线的参数方程为(为参数),
代入得.
设对应参数为,对应参数为.则,,且.
.
参数方程主要通过代入法或者已知恒等式(如等三角恒等式)消去参数化为普通方程,通过选取相应的参数可以把普通方程化为参数方程,利用关系式,等可以把极坐标方程与直角坐标方程互化,这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题.
展开阅读全文