资源描述
宁夏银川二中2025-2026学年高三数学第一学期期末调研试题
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在长方体中,,则直线与平面所成角的余弦值为( )
A. B. C. D.
2.抛物线的焦点为,则经过点与点且与抛物线的准线相切的圆的个数有( )
A.1个 B.2个 C.0个 D.无数个
3.若P是的充分不必要条件,则p是q的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
4.若复数满足,其中为虚数单位,是的共轭复数,则复数( )
A. B. C.4 D.5
5.已知x,y满足不等式,且目标函数z=9x+6y最大值的变化范围[20,22],则t的取值范围( )
A.[2,4] B.[4,6] C.[5,8] D.[6,7]
6.在中,为边上的中线,为的中点,且,,则( )
A. B. C. D.
7.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想的内容是:每个大于2的偶数都可以表示为两个素数的和,例如:,,,那么在不超过18的素数中随机选取两个不同的数,其和等于16的概率为( )
A. B. C. D.
8.已知为虚数单位,若复数,则
A. B.
C. D.
9.若双曲线的渐近线与圆相切,则双曲线的离心率为( )
A.2 B. C. D.
10.正项等差数列的前和为,已知,则=( )
A.35 B.36 C.45 D.54
11.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为( )
A. B. C. D.
12.给出下列三个命题:
①“”的否定;
②在中,“”是“”的充要条件;
③将函数的图象向左平移个单位长度,得到函数的图象.
其中假命题的个数是( )
A.0 B.1 C.2 D.3
二、填空题:本题共4小题,每小题5分,共20分。
13.直线与抛物线交于两点,若,则弦的中点到直线的距离等于________.
14.已知函数与的图象上存在关于轴对称的点,则的取值范围为_____.
15.某部队在训练之余,由同一场地训练的甲、乙、丙三队各出三人,组成小方阵开展游戏,则来自同一队的战士既不在同一行,也不在同一列的概率为______.
16.三所学校举行高三联考,三所学校参加联考的人数分别为160,240,400,为调查联考数学学科的成绩,现采用分层抽样的方法在这三所学校中抽取样本,若在学校抽取的数学成绩的份数为30,则抽取的样本容量为____________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在中,内角所对的边分别为,已知,且.
(I)求角的大小;
(Ⅱ)若,求面积的取值范围.
18.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)写出的普通方程和的直角坐标方程;
(2)设点在上,点在上,求的最小值以及此时的直角坐标.
19.(12分)已知圆的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是是参数),若直线与圆相切,求实数的值.
20.(12分)设函数.
(1)当时,求不等式的解集;
(2)若不等式恒成立,求实数a的取值范围.
21.(12分)已知在中,a、b、c分别为角A、B、C的对边,且.
(1)求角A的值;
(2)若,设角,周长为y,求的最大值.
22.(10分)已知数列中,(实数为常数),是其前项和,且数列是等比数列,恰为与的等比中项.
(1)证明:数列是等差数列;
(2)求数列的通项公式;
(3)若,当时,的前项和为,求证:对任意,都有.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.C
【解析】
在长方体中, 得与平面交于,过做于,可证平面,可得为所求解的角,解,即可求出结论.
【详解】
在长方体中,平面即为平面,
过做于,平面,
平面,
平面,为与平面所成角,
在,
,
直线与平面所成角的余弦值为.
故选:C.
本题考查直线与平面所成的角,定义法求空间角要体现“做”“证”“算”,三步骤缺一不可,属于基础题.
2.B
【解析】
圆心在的中垂线上,经过点,且与相切的圆的圆心到准线的距离与到焦点的距离相等,圆心在抛物线上,直线与抛物线交于2个点,得到2个圆.
【详解】
因为点在抛物线上,
又焦点,,
由抛物线的定义知,过点、且与相切的圆的圆心即为线段的垂直平分线与抛物线的交点,
这样的交点共有2个,
故过点、且与相切的圆的不同情况种数是2种.
故选:.
本题主要考查抛物线的简单性质,本题解题的关键是求出圆心的位置,看出圆心必须在抛物线上,且在垂直平分线上.
3.B
【解析】
试题分析:通过逆否命题的同真同假,结合充要条件的判断方法判定即可.
由p是的充分不必要条件知“若p则”为真,“若则p”为假,根据互为逆否命题的等价性知,“若q则”为真,“若则q”为假,故选B.
考点:逻辑命题
4.D
【解析】
根据复数的四则运算法则先求出复数z,再计算它的模长.
【详解】
解:复数z=a+bi,a、b∈R;
∵2z,
∴2(a+bi)﹣(a﹣bi)=,
即,
解得a=3,b=4,
∴z=3+4i,
∴|z|.
故选D.
本题主要考查了复数的计算问题,要求熟练掌握复数的四则运算以及复数长度的计算公式,是基础题.
5.B
【解析】
作出可行域,对t进行分类讨论分析目标函数的最大值,即可求解.
【详解】
画出不等式组所表示的可行域如图△AOB
当t≤2时,可行域即为如图中的△OAM,此时目标函数z=9x+6y 在A(2,0)取得最大值Z=18不符合题意
t>2时可知目标函数Z=9x+6y在的交点()处取得最大值,此时Z=t+16
由题意可得,20≤t+16≤22解可得4≤t≤6
故选:B.
此题考查线性规划,根据可行域结合目标函数的最大值的取值范围求参数的取值范围,涉及分类讨论思想,关键在于熟练掌握截距型目标函数的最大值最优解的处理办法.
6.A
【解析】
根据向量的线性运算可得,利用及,计算即可.
【详解】
因为,
所以
,
所以,
故选:A
本题主要考查了向量的线性运算,向量数量积的运算,向量数量积的性质,属于中档题.
7.B
【解析】
先求出从不超过18的素数中随机选取两个不同的数的所有可能结果,然后再求出其和等于16的结果,根据等可能事件的概率公式可求.
【详解】
解:不超过18的素数有2,3,5,7,11,13,17共7个,从中随机选取两个不同的数共有,
其和等于16的结果,共2种等可能的结果,
故概率.
故选:B.
古典概型要求能够列举出所有事件和发生事件的个数,本题不可以列举出所有事件但可以用分步计数得到,属于基础题.
8.B
【解析】
因为,所以,故选B.
9.C
【解析】
利用圆心到渐近线的距离等于半径即可建立间的关系.
【详解】
由已知,双曲线的渐近线方程为,故圆心到渐近线的距离等于1,即,
所以,.
故选:C.
本题考查双曲线离心率的求法,求双曲线离心率问题,关键是建立三者间的方程或不等关系,本题是一道基础题.
10.C
【解析】
由等差数列通项公式得,求出,再利用等差数列前项和公式能求出.
【详解】
正项等差数列的前项和,
,
,
解得或(舍),
,故选C.
本题主要考查等差数列的性质与求和公式,属于中档题. 解等差数列问题要注意应用等差数列的性质()与前 项和的关系.
11.D
【解析】
利用列举法,从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有9种情况,由古典概型概率公式可得结果.
【详解】
《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,这5部专著中有3部产生于汉、魏、晋、南北朝时期.记这5部专著分别为,其中产生于汉、魏、晋、南北朝时期.从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有共10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有,共9种情况,所以所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为.故选D.
本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,…. ,再,…..依次….… 这样才能避免多写、漏写现象的发生.
12.C
【解析】
结合不等式、三角函数的性质,对三个命题逐个分析并判断其真假,即可选出答案.
【详解】
对于命题①,因为,所以“”是真命题,故其否定是假命题,即①是假命题;
对于命题②,充分性:中,若,则,由余弦函数的单调性可知,,即,即可得到,即充分性成立;必要性:中,,若,结合余弦函数的单调性可知,,即,可得到,即必要性成立.故命题②正确;
对于命题③,将函数的图象向左平移个单位长度,可得到的图象,即命题③是假命题.
故假命题有①③.
故选:C
本题考查了命题真假的判断,考查了余弦函数单调性的应用,考查了三角函数图象的平移变换,考查了学生的逻辑推理能力,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13.
【解析】
由已知可知直线过抛物线的焦点,求出弦的中点到抛物线准线的距离,进一步得到弦的中点到直线的距离.
【详解】
解:如图,
直线过定点,,
而抛物线的焦点为,,
弦的中点到准线的距离为,
则弦的中点到直线的距离等于.
故答案为:.
本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,体现了数学转化思想方法,属于中档题.
14.
【解析】
两函数图象上存在关于轴对称的点的等价命题是方程在区间上有解,化简方程在区间上有解,构造函数,求导,求出单调区间,利用函数性质得解.
【详解】
解:根据题意,若函数与的图象上存在关于轴对称的点,
则方程在区间上有解,
即方程在区间上有解,
设函数,其导数,
又由,可得:当时, 为减函数,
当时, 为增函数,
故函数有最小值,
又由;比较可得: ,
故函数有最大值,
故函数在区间上的值域为;
若方程在区间上有解,
必有,则有,
即的取值范围是;
故答案为:;
本题利用导数研究函数在某区间上最值求参数的问题, 函数零点问题的拓展. 由于函数的零点就是方程的根,在研究方程的有关问题时,可以将方程问题转化为函数问题解决. 此类问题的切入点是借助函数的零点,结合函数的图象,采用数形结合思想加以解决.
15.
【解析】
分两步进行:首先,先排第一行,再排第二行,最后排第三行;其次,对每一行选人;最后,利用计算出概率即可.
【详解】
首先,第一行队伍的排法有种;第二行队伍的排法有2种;第三行队伍的排法有1种;然后,第一行的每个位置的人员安排有种;第二行的每个位置的人员安排有种;第三行的每个位置的人员安排有种.所以来自同一队的战士既不在同一行,也不在同一列的概率.
故答案为:.
本题考查了分步计数原理,排列与组合知识,考查了转化能力,属于中档题.
16.
【解析】
某层抽取的人数等于该层的总人数乘以抽样比.
【详解】
设抽取的样本容量为x,由已知,,解得.
故答案为:
本题考查随机抽样中的分层抽样,考查学生基本的运算能力,是一道容易题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(Ⅰ);(Ⅱ)
【解析】
(I)根据,利用二倍角公式得到,再由辅助角公式得到,然后根据正弦函数的性质求解.
(Ⅱ)根据(I)由余弦定理得到,再利用重要不等式得到,然后由求解.
【详解】
(I)因为,
所以,
,
,
或,
或,
因为,
所以
所以;
(Ⅱ)由余弦定理得: ,
所以,
所以,当且仅当取等号,
又因为,
所以,
所以
本题主要考查二倍角公式,辅助角公式以及余弦定理,还考查了运算求解的能力,属于中档题.
18.(1):,:;(2),此时.
【解析】
试题分析:(1)的普通方程为,的直角坐标方程为;(2)由题意,可设点的直角坐标为到的距离
当且仅当时,取得最小值,最小值为,此时的直角坐标为.
试题解析: (1)的普通方程为,的直角坐标方程为.
(2)由题意,可设点的直角坐标为,因为是直线,所以的最小值即为到的距离的最小值,.
当且仅当时,取得最小值,最小值为,此时的直角坐标为.
考点:坐标系与参数方程.
【方法点睛】参数方程与普通方程的互化:把参数方程化为普通方程,需要根据其结构特征,选取适当的消参方法,常见的消参方法有:代入消参法;加减消参法;平方和(差)消参法;乘法消参法;混合消参法等.把曲线的普通方程化为参数方程的关键:一是适当选取参数;二是确保互化前后方程的等价性.注意方程中的参数的变化范围.
19.
【解析】
将圆的极坐标方程化为直角坐标方程,直线的参数方程化为普通方程,再根据直线与圆相切,利用圆心到直线的距离等于半径,即可求实数的值.
【详解】
由,得,
, 即圆的方程为,
又由消,得,
直线与圆相切,,.
本题重点考查方程的互化,考查直线与圆的位置关系,解题的关键是利用圆心到直线的距离等于半径,研究直线与圆相切.
20.(1)(2)
【解析】
(1) 利用分段讨论法去掉绝对值,结合图象,从而求得不等式的解集;
(2) 求出函数的最小值,把问题化为,从而求得的取值范围.
【详解】
(1)当时,
则
所以不等式的解集为.
(2)等价于,
而,
故等价于,
所以或,
即或,
所以实数a的取值范围为.
本题考查含有绝对值的不等式解法、不等式恒成立问题,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力、运算求解能力,难度一般.
21.(1);(2).
【解析】
(1)利用正弦定理,结合题中条件,可以得到,之后应用余弦定理即可求得;
(2)利用正弦定理求得,求出三角形的周长,利用三角函数的最值求解即可.
【详解】
(1)由已知可得,
结合正弦定理可得,∴,
又,∴.
(2)由,及正弦定理得,
∴,,
故,即,
由,得,∴当,即时,.
该题主要考查的是有关解三角形的问题,解题的关键是掌握正余弦定理,属于简单题目.
22.(1)见解析(2)(3)见解析
【解析】
(1)令可得,即.得到,再利用通项公式和前n项和的关系求解,
(2)由(1)知,.设等比数列的公比为,所以,再根据恰为与的等比中项求解,
(3)由(2)得到时,,
,求得,再代入证明。
【详解】
(1)解:令可得,即.所以.
时,可得,
当时,所以.
显然当时,满足上式.所以.
,所以数列是等差数列,
(2)由(1)知,.
设等比数列的公比为,所以
,
恰为与的等比中项,
所以,
解得,所以
(3)时,,,而时,,
,
所以当时,.
当时,,
∴对任意,都有,
本题主要考查数列的通项公式和前n项和的关系,等差数列,等比数列的定义和性质以及数列放缩的方法,还考查了转化化归的思想和运算求解的能力,属于难题,
展开阅读全文