资源描述
上海市南汇中学2025-2026学年数学高三上期末联考试题
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.不等式的解集记为,有下面四个命题:;;;.其中的真命题是( )
A. B. C. D.
2.某中学有高中生人,初中生人为了解该校学生自主锻炼的时间,采用分层抽样的方法从高生和初中生中抽取一个容量为的样本.若样本中高中生恰有人,则的值为( )
A. B. C. D.
3.《易经》包含着很多哲理,在信息学、天文学中都有广泛的应用,《易经》的博大精深,对今天 的几何学和其它学科仍有深刻的影响.下图就是易经中记载的几何图形——八卦田,图中正八 边形代表八卦,中间的圆代表阴阳太极图,八块面积相等的曲边梯形代表八卦田.已知正八边 形的边长为,阴阳太极图的半径为,则每块八卦田的面积约为( )
A. B.
C. D.
4.已知定义在上的奇函数满足,且当时,,则( )
A.1 B.-1 C.2 D.-2
5.过抛物线()的焦点且倾斜角为的直线交抛物线于两点.,且在第一象限,则( )
A. B. C. D.
6.已知抛物线的焦点为,若抛物线上的点关于直线对称的点恰好在射线上,则直线被截得的弦长为( )
A. B. C. D.
7.已知实数,,函数在上单调递增,则实数的取值范围是( )
A. B. C. D.
8.已知Sn为等比数列{an}的前n项和,a5=16,a3a4=﹣32,则S8=( )
A.﹣21 B.﹣24 C.85 D.﹣85
9.若复数满足(是虚数单位),则的虚部为( )
A. B. C. D.
10.将函数f(x)=sin 3x-cos 3x+1的图象向左平移个单位长度,得到函数g(x)的图象,给出下列关于g(x)的结论:
①它的图象关于直线x=对称;
②它的最小正周期为;
③它的图象关于点(,1)对称;
④它在[]上单调递增.
其中所有正确结论的编号是( )
A.①② B.②③ C.①②④ D.②③④
11.已知焦点为的抛物线的准线与轴交于点,点在抛物线上,则当取得最大值时,直线的方程为( )
A.或 B.或 C.或 D.
12.已知数列是公差为的等差数列,且成等比数列,则( )
A.4 B.3 C.2 D.1
二、填空题:本题共4小题,每小题5分,共20分。
13.已知半径为的圆周上有一定点,在圆周上等可能地任意取一点与点连接,则所得弦长介于与之间的概率为__________.
14.已知向量,,若,则________.
15.(5分)函数的定义域是____________.
16.在正方体中,为棱的中点,是棱上的点,且,则异面直线与所成角的余弦值为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在中,角的对边分别为,且,.
(1)求的值;
(2)若求的面积.
18.(12分)已知函数.
(1)讨论的单调性并指出相应单调区间;
(2)若,设是函数的两个极值点,若,且恒成立,求实数k的取值范围.
19.(12分)设函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)若函数有两个极值点,求证:.
20.(12分)在直角坐标系中,已知点,若以线段为直径的圆与轴相切.
(1)求点的轨迹的方程;
(2)若上存在两动点(A,B在轴异侧)满足,且的周长为,求的值.
21.(12分)如图,四棱锥中,底面是菱形,对角线交于点为棱的中点,.求证:
(1)平面;
(2)平面平面.
22.(10分)已知函数
(1)当时,证明,在恒成立;
(2)若在处取得极大值,求的取值范围.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A
【解析】
作出不等式组表示的可行域,然后对四个选项一一分析可得结果.
【详解】
作出可行域如图所示,当时,,即的取值范围为,所以为真命题;
为真命题;为假命题.
故选:A
此题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于中档题.
2.B
【解析】
利用某一层样本数等于某一层的总体个数乘以抽样比计算即可.
【详解】
由题意,,解得.
故选:B.
本题考查简单随机抽样中的分层抽样,某一层样本数等于某一层的总体个数乘以抽样比,本题是一道基础题.
3.B
【解析】
由图利用三角形的面积公式可得正八边形中每个三角形的面积,再计算出圆面积的,两面积作差即可求解.
【详解】
由图,正八边形分割成个等腰三角形,顶角为,
设三角形的腰为,
由正弦定理可得,解得,
所以三角形的面积为:
,
所以每块八卦田的面积约为:.
故选:B
本题考查了正弦定理解三角形、三角形的面积公式,需熟记定理与面积公式,属于基础题.
4.B
【解析】
根据f(x)是R上的奇函数,并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期为4,而由x∈[0,1]时,f(x)=2x-m及f(x)是奇函数,即可得出f(0)=1-m=0,从而求得m=1,这样便可得出f(2019)=f(-1)=-f(1)=-1.
【详解】
∵是定义在R上的奇函数,且;
∴;
∴;
∴的周期为4;
∵时,;
∴由奇函数性质可得;
∴;
∴时,;
∴.
故选:B.
本题考查利用函数的奇偶性和周期性求值,此类问题一般根据条件先推导出周期,利用函数的周期变换来求解,考查理解能力和计算能力,属于中等题.
5.C
【解析】
作,;,由题意,由二倍角公式即得解.
【详解】
由题意,,准线:,
作,;,
设,
故,,
.
故选:C
本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.
6.B
【解析】
由焦点得抛物线方程,设点的坐标为,根据对称可求出点的坐标,写出直线方程,联立抛物线求交点,计算弦长即可.
【详解】
抛物线的焦点为,
则,即,
设点的坐标为,点的坐标为,
如图:
∴,
解得,或(舍去),
∴
∴直线的方程为,
设直线与抛物线的另一个交点为,
由,解得或,
∴,
∴,
故直线被截得的弦长为.
故选:B.
本题主要考查了抛物线的标准方程,简单几何性质,点关于直线对称,属于中档题.
7.D
【解析】
根据题意,对于函数分2段分析:当,由指数函数的性质分析可得①,当,由导数与函数单调性的关系可得,在上恒成立,变形可得②,再结合函数的单调性,分析可得③,联立三个式子,分析可得答案.
【详解】
解:根据题意,函数在上单调递增,
当,若为增函数,则①,
当,
若为增函数,必有在上恒成立,
变形可得:,
又由,可得在上单调递减,则,
若在上恒成立,则有②,
若函数在上单调递增,左边一段函数的最大值不能大于右边一段函数的最小值,
则需有,③
联立①②③可得:.
故选:D.
本题考查函数单调性的性质以及应用,注意分段函数单调性的性质.
8.D
【解析】
由等比数列的性质求得a1q4=16,a12q5=﹣32,通过解该方程求得它们的值,求首项和公比,根据等比数列的前n项和公式解答即可.
【详解】
设等比数列{an}的公比为q,
∵a5=16,a3a4=﹣32,
∴a1q4=16,a12q5=﹣32,
∴q=﹣2,则,
则,
故选:D.
本题主要考查等比数列的前n项和,根据等比数列建立条件关系求出公比是解决本题的关键,属于基础题.
9.A
【解析】
由得,然后分子分母同时乘以分母的共轭复数可得复数,从而可得的虚部.
【详解】
因为,
所以,
所以复数的虚部为.
故选A.
本题考查了复数的除法运算和复数的概念,属于基础题.复数除法运算的方法是分子分母同时乘以分母的共轭复数,转化为乘法运算.
10.B
【解析】
根据函数图象的平移变换公式求出函数的解析式,再利用正弦函数的对称性、单调区间等相关性质求解即可.
【详解】
因为f(x)=sin 3x-cos 3x+1=2sin(3x-)+1,由图象的平移变换公式知,
函数g(x)=2sin[3(x+)-]+1=2sin(3x+)+1,其最小正周期为,故②正确;
令3x+=kπ+,得x=+(k∈Z),所以x=不是对称轴,故①错误;
令3x+=kπ,得x=-(k∈Z),取k=2,得x=,故函数g(x)的图象关于点(,1)对称,故③正确;
令2kπ-≤3x+≤2kπ+,k∈Z,得-≤x≤+,取k=2,得≤x≤,取k=3,得≤x≤,故④错误;
故选:B
本题考查图象的平移变换和正弦函数的对称性、单调性和最小正周期等性质;考查运算求解能力和整体代换思想;熟练掌握正弦函数的对称性、单调性和最小正周期等相关性质是求解本题的关键;属于中档题、常考题型
11.A
【解析】
过作与准线垂直,垂足为,利用抛物线的定义可得,要使最大,则应最大,此时与抛物线相切,再用判别式或导数计算即可.
【详解】
过作与准线垂直,垂足为,,
则当取得最大值时,最大,此时与抛物线相切,
易知此时直线的斜率存在,设切线方程为,
则.则,
则直线的方程为.
故选:A.
本题考查直线与抛物线的位置关系,涉及到抛物线的定义,考查学生转化与化归的思想,是一道中档题.
12.A
【解析】
根据等差数列和等比数列公式直接计算得到答案.
【详解】
由成等比数列得,即,已知,解得.
故选:.
本题考查了等差数列,等比数列的基本量的计算,意在考查学生的计算能力.
二、填空题:本题共4小题,每小题5分,共20分。
13.
【解析】
在圆上其他位置任取一点B,设圆半径为R,
其中满足条件AB弦长介于与之间的弧长为 •2πR,
则AB弦的长度大于等于半径长度的概率P==;
故答案为:.
14.10
【解析】
根据垂直得到,代入计算得到答案.
【详解】
,则,解得,
故,故.
故答案为:.
本题考查了根据向量垂直求参数,向量模,意在考查学生的计算能力.
15.
【解析】
要使函数有意义,则,即,解得,故函数的定义域是.
16.
【解析】
根据题意画出几何题,建立空间直角坐标系,写个各个点的坐标,并求得.由空间向量的夹角求法即可求得异面直线与所成角的余弦值.
【详解】
根据题意画出几何图形,以为原点建立空间直角坐标系:
设正方体的棱长为1,则
所以
所以,
所以异面直线与所成角的余弦值为,
故答案为:.
本题考查了异面直线夹角的求法,利用空间向量求异面直线夹角,属于中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(1)3(2)78
【解析】
试题分析:(1)由两角和差公式得到,由三角形中的数值关系得到,进而求得数值;(2)由三角形的三个角的关系得到,再由正弦定理得到b=15,故面积公式为.
解析:
(1)在中,由,得为锐角,所以,
所以,
所以.
(2)在三角形中,由,
所以, 由,
由正弦定理,得,
所以的面积.
18.(1)答案见解析(2)
【解析】
(1)先对函数进行求导得,对分成和两种情况讨论,从而得到相应的单调区间;
(2)对函数求导得,从而有,,,三个方程中利用得到.将不等式的左边转化成关于的函数,再构造新函数利用导数研究函数的最小值,从而得到的取值范围.
【详解】
解:(1)由,,
则,
当时,则,故在上单调递减;
当时,令,
所以在上单调递减,在上单调递增.
综上所述:当时,在上单调递减;
当时,在上单调递减,在上单调递增.
(2)∵,
,
由得,
∴,,∴
∵∴解得.
∴.
设,
则,
∴在上单调递减;
当时,.
∴,即所求的取值范围为.
本题考查利用导数研究函数的单调性、最值,考查分类讨论思想和数形结合思想,求解双元问题的常用思路是:通过换元或消元,将双元问题转化为单元问题,然后利用导数研究单变量函数的性质.
19.(Ⅰ)见解析(Ⅱ)见解析
【解析】
(Ⅰ)求导得到,讨论,,三种情况得到单调区间.
(Ⅱ)设,要证,即证,,设,根据函数单调性得到证明.
【详解】
(Ⅰ) ,
令,,
(1)当,即时,,,在上单调递增;
(2)当,即时,设的两根为(),
,
①若,,时,,
所以在和上单调递增,
时,,所以在上单调递减,
②若,,时,,所以在上单调递减, 时,,所以在上单调递增.
综上,当时,在上单调递增;
当时, 在和上单调递增,
在上单调递减;
当时,在上单调递减,在上单调递增.
(Ⅱ)不妨设,要证,
即证,
即证,
由(Ⅰ)可知,,,可得,
,
所以有,
令,
,
所以在单调递增, 所以,
因为,所以,所以.
本题考查了函数单调性,证明不等式,意在考查学生的分类讨论能力和计算能力.
20.(1);(2)
【解析】
(1)设,则由题设条件可得,化简后可得轨迹的方程.
(2)设直线,联立直线方程和抛物线方程后利用韦达定理化简并求得,结合焦半径公式及弦长公式可求的值及的长.
【详解】
(1)设,则圆心的坐标为,
因为以线段为直径的圆与轴相切,
所以,
化简得的方程为.
(2)由题意,设直线,
联立得,
设 (其中)
所以,,且,
因为,所以,
,所以,故或 (舍),
直线,
因为的周长为
所以.
即,
因为.
又,
所以,
解得,
所以.
本题考查曲线方程以及抛物线中的弦长计算,还涉及到向量的数量积.一般地,抛物线中的弦长问题,一般可通过联立方程组并消元得到关于或的一元二次方程,再把已知等式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有或,最后利用韦达定理把关系式转化为某一个变量的方程.本题属于中档题.
21.(1)详见解析;(2)详见解析.
【解析】
(1) 连结根据中位线的性质证明即可.
(2) 证明,再证明平面即可.
【详解】
解:证明:连结
是菱形对角线的交点,
为的中点,
是棱的中点,
平面平面
平面
解:在菱形中,且为的中点,
,
,
平面
平面,
平面平面.
本题主要考查了线面平行与垂直的判定,属于基础题.
22.(1)证明见解析(2)
【解析】
(1)根据,求导,令,用导数法求其最小值.
设研究在处左正右负,求导,分 ,,三种情况讨论求解.
【详解】
(1)因为,
所以,
令,则,
所以是的增函数,
故,
即.
因为
所以,
①当时,,
所以函数在上单调递增.
若,则
若,则
所以函数的单调递增区间是,单调递减区间是,
所以在处取得极小值,不符合题意,
②当时,
所以函数在上单调递减.
若,则
若,则
所以的单调递减区间是,单调递增区间是,
所以在处取得极大值,符合题意.
③当时,,使得,
即,但当时,即
所以函数在上单调递减,
所以,即函数)在上单调递减,不符合题意
综上所述,的取值范围是
本题主要考查导数与函数的单调性和极值,还考查了转化化归的思想和运算求解的能力,属于难题.
展开阅读全文