资源描述
湖南省益阳市桃江县2025-2026学年高三数学第一学期期末联考试题
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数,若曲线在点处的切线方程为,则实数的取值为( )
A.-2 B.-1 C.1 D.2
2.双曲线的离心率为,则其渐近线方程为
A. B. C. D.
3.如图,在四边形中,,,,,,则的长度为( )
A. B.
C. D.
4.已知集合A={y|y},B={x|y=lg(x﹣2x2)},则∁R(A∩B)=( )
A.[0,) B.(﹣∞,0)∪[,+∞)
C.(0,) D.(﹣∞,0]∪[,+∞)
5.某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则该单位去年的水费开支占总开支的百分比为( )
A. B. C. D.
6.函数在上单调递减,且是偶函数,若 ,则 的取值范围是( )
A.(2,+∞) B.(﹣∞,1)∪(2,+∞)
C.(1,2) D.(﹣∞,1)
7.函数f(x)=的图象大致为()
A. B.
C. D.
8.已知是虚数单位,若,则( )
A. B.2 C. D.10
9.已知函数,,当时,不等式恒成立,则实数a的取值范围为( )
A. B. C. D.
10.已知与函数和都相切,则不等式组所确定的平面区域在内的面积为( )
A. B. C. D.
11.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为( )
A. B. C. D.
12.对于任意,函数满足,且当时,函数.若,则大小关系是( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.圆心在曲线上的圆中,存在与直线相切且面积为的圆,则当取最大值时,该圆的标准方程为______.
14.工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺栓.若按一定顺序将每个螺栓固定紧,但不能连续固定相邻的2个螺栓.则不同的固定螺栓方式的种数是________.
15.从4名男生和3名女生中选出4名去参加一项活动,要求男生中的甲和乙不能同时参加,女生中的丙和丁至少有一名参加,则不同的选法种数为______.(用数字作答)
16.若且时,不等式恒成立,则实数a的取值范围为________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数,曲线在点处的切线方程为.
(1)求,的值;
(2)证明函数存在唯一的极大值点,且.
18.(12分)已知矩形中,,E,F分别为,的中点.沿将矩形折起,使,如图所示.设P、Q分别为线段,的中点,连接.
(1)求证:平面;
(2)求二面角的余弦值.
19.(12分)为了响应国家号召,促进垃圾分类,某校组织了高三年级学生参与了“垃圾分类,从我做起”的知识问卷作答随机抽出男女各20名同学的问卷进行打分,作出如图所示的茎叶图,成绩大于70分的为“合格”.
(Ⅰ)由以上数据绘制成2×2联表,是否有95%以上的把握认为“性别”与“问卷结果”有关?
男
女
总计
合格
不合格
总计
(Ⅱ)从上述样本中,成绩在60分以下(不含60分)的男女学生问卷中任意选2个,记来自男生的个数为,求的分布列及数学期望.
附:
0.100
0.050
0.010
0.001
2.706
3.841
6.635
10.828
20.(12分)如图1,在等腰中,,,分别为,的中点,为的中点,在线段上,且。将沿折起,使点到的位置(如图2所示),且。
(1)证明:平面;
(2)求平面与平面所成锐二面角的余弦值
21.(12分)已知抛物线,直线与交于,两点,且.
(1)求的值;
(2)如图,过原点的直线与抛物线交于点,与直线交于点,过点作轴的垂线交抛物线于点,证明:直线过定点.
22.(10分)在极坐标系中,曲线的极坐标方程为
(1)求曲线与极轴所在直线围成图形的面积;
(2)设曲线与曲线交于,两点,求.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.B
【解析】
求出函数的导数,利用切线方程通过f′(0),求解即可;
【详解】
f (x)的定义域为(﹣1,+∞),
因为f′(x)a,曲线y=f(x)在点(0,f(0))处的切线方程为y=2x,
可得1﹣a=2,解得a=﹣1,
故选:B.
本题考查函数的导数的几何意义,切线方程的求法,考查计算能力.
2.A
【解析】
分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.
详解:
因为渐近线方程为,所以渐近线方程为,选A.
点睛:已知双曲线方程求渐近线方程:.
3.D
【解析】
设,在中,由余弦定理得,从而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.
【详解】
设,在中,由余弦定理得,
则,从而,
由正弦定理得,即,
从而,
在中,由余弦定理得:,
则.
故选:D
本题主要考查正弦定理和余弦定理的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.
4.D
【解析】
求函数的值域得集合,求定义域得集合,根据交集和补集的定义写出运算结果.
【详解】
集合A={y|y}={y|y≥0}=[0,+∞);
B={x|y=lg(x﹣2x2)}={x|x﹣2x2>0}={x|0<x}=(0,),
∴A∩B=(0,),
∴∁R(A∩B)=(﹣∞,0]∪[,+∞).
故选:D.
该题考查的是有关集合的问题,涉及到的知识点有函数的定义域,函数的值域,集合的运算,属于基础题目.
5.A
【解析】
由折线图找出水、电、交通开支占总开支的比例,再计算出水费开支占水、电、交通开支的比例,相乘即可求出水费开支占总开支的百分比.
【详解】
水费开支占总开支的百分比为.
故选:A
本题考查折线图与柱形图,属于基础题.
6.B
【解析】
根据题意分析的图像关于直线对称,即可得到的单调区间,利用对称性以及单调性即可得到的取值范围。
【详解】
根据题意,函数 满足是偶函数,则函数的图像关于直线对称,
若函数在上单调递减,则在上递增,
所以要使,则有,变形可得,
解可得:或,即的取值范围为;
故选:B.
本题考查偶函数的性质,以及函数单调性的应用,有一定综合性,属于中档题。
7.D
【解析】
根据函数为非偶函数可排除两个选项,再根据特殊值可区分剩余两个选项.
【详解】
因为f(-x)=≠f(x)知f(x)的图象不关于y轴对称,排除选项B,C.
又f(2)==-<0.排除A,故选D.
本题主要考查了函数图象的对称性及特值法区分函数图象,属于中档题.
8.C
【解析】
根据复数模的性质计算即可.
【详解】
因为,
所以,
,
故选:C
本题主要考查了复数模的定义及复数模的性质,属于容易题.
9.D
【解析】
由变形可得,可知函数在为增函数, 由恒成立,求解参数即可求得取值范围.
【详解】
,即函数在时是单调增函数.
则恒成立.
.
令,则
时,单调递减,时单调递增.
故选:D.
本题考查构造函数,借助单调性定义判断新函数的单调性问题,考查恒成立时求解参数问题,考查学生的分析问题的能力和计算求解的能力,难度较难.
10.B
【解析】
根据直线与和都相切,求得的值,由此画出不等式组所表示的平面区域以及圆,由此求得正确选项.
【详解】
.设直线与相切于点,斜率为,所以切线方程为,化简得①.令,解得,,所以切线方程为,化简得②.由①②对比系数得,化简得③.构造函数,,所以在上递减,在上递增,所以在处取得极小值也即是最小值,而,所以有唯一解.也即方程③有唯一解.所以切线方程为.即.不等式组即,画出其对应的区域如下图所示.圆可化为,圆心为.而方程组的解也是.画出图像如下图所示,不等式组所确定的平面区域在内的部分如下图阴影部分所示.直线的斜率为,直线的斜率为.所以,所以,而圆的半径为,所以阴影部分的面积是.
故选:B
本小题主要考查根据公共切线求参数,考查不等式组表示区域的画法,考查圆的方程,考查两条直线夹角的计算,考查扇形面积公式,考查数形结合的数学思想方法,考查分析思考与解决问题的能力,属于难题.
11.D
【解析】
利用列举法,从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有9种情况,由古典概型概率公式可得结果.
【详解】
《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,这5部专著中有3部产生于汉、魏、晋、南北朝时期.记这5部专著分别为,其中产生于汉、魏、晋、南北朝时期.从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有共10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有,共9种情况,所以所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为.故选D.
本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,…. ,再,…..依次….… 这样才能避免多写、漏写现象的发生.
12.A
【解析】
由已知可得的单调性,再由可得对称性,可求出在单调性,即可求出结论.
【详解】
对于任意,函数满足,
因为函数关于点对称,
当时,是单调增函数,
所以在定义域上是单调增函数.
因为,所以,
.
故选:A.
本题考查利用函数性质比较函数值的大小,解题的关键要掌握函数对称性的代数形式,属于中档题..
二、填空题:本题共4小题,每小题5分,共20分。
13.
【解析】
由题意可得圆的面积求出圆的半径,由圆心在曲线上,设圆的圆心坐标,到直线的距离等于半径,再由均值不等式可得的最大值时圆心的坐标,进而求出圆的标准方程.
【详解】
设圆的半径为,由题意可得,所以,
由题意设圆心,由题意可得,
由直线与圆相切可得,所以,
而,,所以,即,解得,
所以的最大值为2,当且仅当时取等号,可得,
所以圆心坐标为:,半径为,
所以圆的标准方程为:.
故答案为:.
本题考查直线与圆的位置关系及均值不等式的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意验正等号成立的条件.
14.60
【解析】
分析:首先将选定第一个钉,总共有6种方法,假设选定1号,之后分析第二步,第三步等,按照分类加法计数原理,可以求得共有10种方法,利用分步乘法计数原理,求得总共有种方法.
详解:根据题意,第一个可以从6个钉里任意选一个,共有6种选择方法,并且是机会相等的,若第一个选1号钉的时候,第二个可以选3,4,5号钉,依次选下去,可以得到共有10种方法,所以总共有种方法,故答案是60.
点睛:该题考查的是有关分类加法计数原理和分步乘法计数原理,在解题的过程中,需要逐个的将对应的过程写出来,所以利用列举法将对应的结果列出,而对于第一个选哪个是机会均等的,从而用乘法运算得到结果.
15.1
【解析】
由排列组合及分类讨论思想分别讨论:①设甲参加,乙不参加,②设乙参加,甲不参加,③设甲,乙都不参加,可得不同的选法种数为9+9+5=1,得解.
【详解】
①设甲参加,乙不参加,由女生中的丙和丁至少有一名参加,可得不同的选法种数为9,
②设乙参加,甲不参加,由女生中的丙和丁至少有一名参加,可得不同的选法种数为9,
③设甲,乙都不参加,由女生中的丙和丁至少有一名参加,可得不同的选法种数为5,
综合①②③得:不同的选法种数为9+9+5=1,
故答案为:1.
本题考查了排列组合及分类讨论思想,准确分类及计算是关键,属中档题.
16.
【解析】
将不等式两边同时平方进行变形,然后得到对应不等式组,对的取值进行分类,将问题转化为二次函数在区间上恒正、恒负时求参数范围,列出对应不等式组,即可求解出的取值范围.
【详解】
因为,所以,所以,
所以,所以或,
当时,对且不成立,
当时,取,显然不满足,所以,
所以,解得;
当时,取,显然不满足,所以,
所以,解得,
综上可得的取值范围是:.
故答案为:.
本题考查根据不等式恒成立求解参数范围,难度较难.根据不等式恒成立求解参数范围的两种常用方法:(1)分类讨论法:分析参数的临界值,对参数分类讨论;(2)参变分离法:将参数单独分离出来,再以函数的最值与参数的大小关系求解出参数范围.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(1)(2)证明见解析
【解析】
(1)求导,可得(1),(1),结合已知切线方程即可求得,的值;
(2)利用导数可得,,再构造新函数,利用导数求其最值即可得证.
【详解】
(1)函数的定义域为,,
则(1),(1),
故曲线在点,(1)处的切线方程为,
又曲线在点,(1)处的切线方程为,
,;
(2)证明:由(1)知,,则,
令,则,易知在单调递减,
又,(1),
故存在,使得,
且当时,,单调递增,当,时,,单调递减,
由于,(1),(2),
故存在,使得,
且当时,,,单调递增,当,时,,,单调递减,
故函数存在唯一的极大值点,且,即,
则,
令,则,
故在上单调递增,
由于,故(2),即,
.
本题考查导数的几何意义以及利用导数研究函数的单调性,极值及最值,考查推理论证能力,属于中档题.
18.(1)证明见解析(2)
【解析】
(1) 取中点R,连接,,可知中,且,由Q是中点,可得则有且,即四边形是平行四边形,则有,即证得平面.
(2) 建立空间直角坐标系,求得半平面的法向量: ,然后利用空间向量的相关结论可求得二面角的余弦值.
【详解】
(1)取中点R,连接,,
则在中,,且,
又Q是中点,所以,
而且,所以,
所以四边形是平行四边形,
所以,
又平面,平面,
所以平面.
(2)在平面内作交于点G,以E为原点,,,分别为x,y,x轴,
建立如图所示的空间直角坐标系,
则各点坐标为,,,
所以,,
设平面的一个法向量为,
则即,
取,得,
又平面的一个法向量为,
所以.
因此,二面角的余弦值为
本题考查线面平行的判定,考查利用空间向量求解二面角,考查逻辑推理能力及运算求解能力,难度一般.
19.(Ⅰ)填表见解析,有95%以上的把握认为“性别”与“问卷结果”有关; (Ⅱ)分布列见解析,
【解析】
(Ⅰ)根据茎叶图填写列联表,计算得到答案.
(Ⅱ),计算,,,得到分布列,再计算数学期望得到答案.
【详解】
(Ⅰ)根据茎叶图可得:
男
女
总计
合格
10
16
26
不合格
10
4
14
总计
20
20
40
,
故有95%以上的把握认为“性别”与“问卷结果””有关.
(Ⅱ)从茎叶图可知,成绩在60分以下(不含60分)的男女学生人数分别是4人和2人,从中任意选2人,基本事件总数为,
,,,
0
1
2
.
本题考查了独立性检验,分布列,数学期望,意在考查学生的综合应用能力.
20.(1)证明见解析
(2)
【解析】
(1)要证明线面平行,需证明线线平行,取的中点,连接,根据条件证明,即;
(2)以为原点,所在直线为轴,过作平行于的直线为轴,所在直线为轴,建立空间直角坐标系,求两个平面的法向量,利用法向量求二面角的余弦值.
【详解】
(1)证明:取的中点,连接.
∵,∴为的中点.
又为的中点,∴.
依题意可知,则四边形为平行四边形,
∴,从而.
又平面,平面,
∴平面.
(2),且,
平面,平面,
,
,且,
平面,
以为原点,所在直线为轴,过作平行于的直线为轴,所在直线为轴,建立空间直角坐标系,不妨设,
则,,,,,
,,,.
设平面的法向量为,
则,即,
令,得.
设平面的法向量为,
则,即,
令,得.
从而,
故平面与平面所成锐二面角的余弦值为.
本题考查线面平行的证明和空间坐标法解决二面角的问题,意在考查空间想象能力,推理证明和计算能力,属于中档题型,证明线面平行,或证明面面平行时,关键是证明线线平行,所以做辅助线或证明时,需考虑构造中位线或平行四边形,这些都是证明线线平行的常方法.
21.(1);(2)见解析
【解析】
(1)联立直线和抛物线,消去可得,求出,,再代入弦长公式计算即可.
(2)由(1)可得,设,计算直线的方程为,代入求出,即可求出,再代入抛物线方程,求出,最后计算直线的斜率,求出直线的方程,化简可得到恒过的定点.
【详解】
(1)由,消去可得,
设,,则,.
,
解得或(舍去),
.
(2)证明:由(1)可得,设,
所以直线的方程为,
当时,,则,
代入抛物线方程,可得,,
所以直线的斜率,
直线的方程为,
整理可得,故直线过定点.
本题第一问考查直线与抛物线相交的弦长问题,需熟记弦长公式.第二问考查直线方程和直线恒过定点问题,需有较强的计算能力,属于难题.
22.(1);(2)
【解析】
(1)利用互化公式,将曲线的极坐标方程化为直角坐标方程,得出曲线与极轴所在直线围成的图形是一个半径为1的圆周及一个两直角边分别为1与的直角三角形,即可求出面积;
(2)联立方程组,分别求出和的坐标,即可求出.
【详解】
解:(1)由于的极坐标方程为,
根据互化公式得,曲线的直角坐标方程为:
当时,,
当时,,
则曲线与极轴所在直线围成的图形,
是一个半径为1的圆周及一个两直角边分别为1与的直角三角形,
∴围成图形的面积.
(2)由得,其直角坐标为,
化直角坐标方程为,
化直角坐标方程为,
∴,
∴.
本题考查利用互化公式将极坐标方程化为直角坐标方程,以及联立方程组求交点坐标,考查计算能力.
展开阅读全文