收藏 分销(赏)

2015年中考数学试卷解析分类汇编专题4-一元一次方程及其应用.doc

上传人:仙人****88 文档编号:11990413 上传时间:2025-08-26 格式:DOC 页数:8 大小:231.50KB 下载积分:10 金币
下载 相关 举报
2015年中考数学试卷解析分类汇编专题4-一元一次方程及其应用.doc_第1页
第1页 / 共8页
2015年中考数学试卷解析分类汇编专题4-一元一次方程及其应用.doc_第2页
第2页 / 共8页


点击查看更多>>
资源描述
一元一次方程及其应用 一.选择题 .(2015•江苏无锡,第4题2分)方程2x﹣1=3x+2的解为(  )   A. x=1 B. x=﹣1 C. x=3 D. x=﹣3 考点: 解一元一次方程. 分析: 方程移项合并,把x系数化为1,即可求解. 解答: 解:方程2x﹣1=3x+2, 移项得:2x﹣3x=2+1, 合并得:﹣x=3. 解得:x=﹣3, 故选D. 点评: 此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求解.   2. (2015•四川南充,第4题3分)学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,则今年购置计算机的数量是( ) (A)25台 (B)50台 (C)75台 (D)100台 【答案】C 考点:一元一次方程的应用. 3. (2015•浙江杭州,第7题3分)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%,设把x公顷旱地改为林地,则可列方程( ) A. 54−x=20%×108 B. 54−x=20%×(108+x) C. 54+x=20%×162 D. 108−x=20%(54+x) 【答案】B. 【考点】由实际问题列方程. 【分析】根据题意,旱地改为林地后,旱地面积为公顷,林地面积为公顷,等量关系为“旱地占林地面积的20%”,即. 故选B. 4.(2015•北京市,第9题,3分)一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠: 会员年卡类型 办卡费用(元) 每次游泳收费(元) A类 50 25 B类 200 20 C类 400 15 例如,购买A类会员卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为 A.购买A类会员年卡 B.购买B类会员年卡 C.购买C类会员年卡 D.不购买会员年卡 【考点】一元一次方程 【难度】中等 【答案】C 【点评】本题考查一元一次方程的基本概念。 5.(2015·深圳,第10题 分)某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元。 A、  B、     C、     D、 【答案】B.    【解析】设进价为x元,则200X0.8-x=40,解得:x=120,选B。 二.填空题 1.(2015·湖北省孝感市,第14题3分)某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m3,每立方米收费2 元;若用水超过20m3,超过部分每立方米加收1元.小明家5月份交水费64 元,则他家该月用水 ☆ m3. 考点:一元一次方程的应用.. 分析:20立方米时交40元,题中已知五月份交水费64元,即已经超过20立方米,所以在64元水费中有两部分构成,列方程即可解答. 解答:解:设该用户居民五月份实际用水x立方米, 故20×2+(x﹣20)×3=64, 故x=28. 故答案是:28. 点评:本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解. 2.(2015·四川甘孜、阿坝,第22题4分)已知关于x的方程3a﹣x=+3的解为2,则代数式a2﹣2a+1的值是 1 . 考点: 一元一次方程的解.. 分析: 先把x=2代入方程求出a的值,再把a的值代入代数式进行计算即可. 解答: 解:∵关于x的方程3a﹣x=+3的解为2, ∴3a﹣2=+3,解得a=2, ∴原式=4﹣4+1=1. 故答案为:1. 点评: 本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键. 3. (2015•浙江省绍兴市,第16题,5分)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示。若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,则开始注入 ▲ 分钟的水量后,甲与乙的水位高度之差是0.5cm 考点:一元一次方程的应用.. 专题:分类讨论. 分析:由甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,注水1分钟,乙的水位上升cm,得到注水1分钟,丙的水位上升cm,设开始注入t分钟的水量后,甲与乙的水位高度之差是0.5cm,甲与乙的水位高度之差是0.5cm有三种情况:①当乙的水位低于甲的水位时,②当甲的水位低于乙的水位时,甲的水位不变时,③当甲的水位低于乙的水位时,乙的水位到达管子底部,甲的水位上升时,分别列方程求解即可. 解答:解:∵甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1, ∵注水1分钟,乙的水位上升cm, ∴注水1分钟,丙的水位上升cm, 设开始注入t分钟的水量后,甲与乙的水位高度之差是0.5cm, 甲与乙的水位高度之差是0.5cm有三种情况: ①当乙的水位低于甲的水位时, 有1﹣t=0.5, 解得:t=分钟; ②当甲的水位低于乙的水位时,甲的水位不变时, ∵t﹣1=0.5, 解得:t=, ∵×=6>5, ∴此时丙容器已向甲容器溢水, ∵5÷=分钟,=,即经过分钟边容器的水到达管子底部,乙的水位上升, ∴,解得:t=; ③当甲的水位低于乙的水位时,乙的水位到达管子底部,甲的水位上升时, ∵乙的水位到达管子底部的时间为;分钟, ∴5﹣1﹣2×(t﹣)=0.5, 解得:t=, 综上所述开始注入,,,分钟的水量后,甲与乙的水位高度之差是0.5cm. 点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解. 4. (2015•浙江嘉兴,第15题5分)公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为____▲____. 考点:一元一次方程的应用.. 专题:数字问题. 分析:设“它”为x,根据它的全部,加上它的七分之一,其和等于19列出方程,求出方程的解得到x的值,即可确定出“它”的值. 解答:解:设“它”为x, 根据题意得:x+x=19, 解得:x=, 则“它”的值为, 故答案为:. 点评:此题考查了一元一次方程的应用,弄清题中的等量关系是解本题的关键. 5. (2015•浙江丽水,第14题4分)解一元二次方程错误!不能通过编辑域代码创建对象。时,可转化为两个一元一次方程,请写出其中的一个一元一次方程 ▲ . 【答案】(答案不唯一). 【考点】开放型;解一元二次方程. 【分析】∵由得, ∴或. 三.解答题 1. (2015•浙江宁波,第22题10分)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵. (1)A、B两种花木的数量分别是多少棵? (2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务? 【答案】解:(1)设B种花木的数量是棵,则A种花木的数量是棵. 根据题意,得, 解得. 答: A种花木的数量是4200棵,B种花木的数量是2400棵. (2)设安排人种植A种花木,则安排人种植B种花木. 根据题意,得,解得. 经检验,是原方程的根,且符合题意. . 答:安排14人种植A种花木,安排12人种植B种花木,才能确保同时完成各自的任务. 【考点】一元一次方程和分式方程的应用. 【分析】(1)方程的应用解题关键是找出等量关系,列出方程求解. 本题设B种花木的数量是棵,则A种花木的数量是棵,等量关系为:“广场内种植A、B两种花木共6600棵”. (2)方程的应用解题关键是找出等量关系,列出方程求解. 本题设安排人种植A种花木,则安排人种植B种花木,等量关系为:“每人每天能种植A花木60棵或B花木40棵” 2. (2015•四川乐山,第22题10分)“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表: (1)小张如何进货,使进货款恰好为1300元? (2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值. 【答案】(1)A文具为40只,B文具60只;(2)各进50只,最大利润为500元. 考点:1.一次函数的应用;2.一元一次方程的应用;3.一元一次不等式的应用. 3.(2015•江苏泰州,第21题10分)某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件, 并以每件120元的价格销售了400件.商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标? 【答案】每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标. 【解析】 试题分析:设每件衬衫降价x元,根据销售完这批衬衫正好达到盈利45%的预期目标,列出方程求解即可. 试题解析:设每件衬衫降价x元,依题意有 120×400+(120-x)×100=80×500×(1+45%), 解得x=20. 答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标. 考点:一元一次方程的应用. 4.(2015•广东广州,第17题9分)解方程:5x=3(x﹣4) 考点: 解一元一次方程. 专题: 计算题. 分析: 方程去括号,移项合并,把x系数化为1,即可求出解. 解答: 解:方程去括号得:5x=3x﹣12, 移项合并得:2x=﹣12, 解得:x=﹣6. 点评: 此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键. 第 8 页 共 8 页
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服