收藏 分销(赏)

文科数学复习知识点整理wy.doc

上传人:仙人****88 文档编号:11989970 上传时间:2025-08-26 格式:DOC 页数:14 大小:2.03MB 下载积分:10 金币
下载 相关 举报
文科数学复习知识点整理wy.doc_第1页
第1页 / 共14页
文科数学复习知识点整理wy.doc_第2页
第2页 / 共14页


点击查看更多>>
资源描述
高三文科数学总复习 集合: 1、集合元素的特征:①确定性 ②互异性 ③无序性 2、常用数集及其记法:①自然数集(或非负整数集)记为 正整数集记为或 ②整数集记为 ③实数集记为 ④有理数集记为 3、重要的等价关系: 4、一个由个元素组成的集合有个不同的子集,其中有个非空子集,也有个真子集 函数: 1、函数单调性 (1)证明:取值--—作差----变形----定号----结论 (2)常用结论: ①若为增(减)函数,则为减(增)函数 ②增+增=增,减+减=减 ③复合函数的单调性是“同增异减” ④奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反 9、函数奇偶性 (1)定义:①, 就叫做偶函数 ②, 就叫做奇函数 注意:①函数为奇偶函数的前提是定义域在数轴上关于原点对称 ②奇函数的图像关于原点对称,偶函数的图象关于轴对称 ③若奇函数在处有意义,则 (2)函数奇偶性的常用结论: 奇 + 奇 = 奇,偶 + 偶 = 偶,奇 * 奇 = 偶,偶 * 偶 = 偶,奇 * 偶 = 奇 基本初等函数 1、(1)一般地,如果,那么叫做的次方根。其中 ①负数没有偶次方根 ②0的任何次方根都是0,记作 ③当是奇数时,,当是偶数时, ④我们规定:(1) (2) (2)对数的定义:若,那么,其中叫做对数的底数, 称为以为底的的对数,叫做真数 注:(1)负数和零没有对数(因为) (2)(且) (3)将代回得到一个常用公式 (4) 2、(1)①② ③ (2)① ② ③ ④换底公式: ,利用换底公式推导下面的结论: (1) (2) 3、指数函数、对数函数、幂函数的图像和性质 表1 指数函数 对数数函数 定义域 值域 图象 性质 过定点 过定点 减函数 增函数 减函数 增函数 表2 幂函数 奇函数 偶函数 第一象限性质 减函数 增函数 过定点 4、几种常见函数的导数: (为常数) () 5、导数的运算法则 . . . 6、会用导数求单调区间、极值、最值 7、求函数的极值的方法是:解方程.当时: (1) 如果在附近的左侧,右侧,那么是极大值; (2) 如果在附近的左侧,右侧,那么是极小值. 三角函数 1、与角终边相同的角的集合为 2、设是一个任意大小的角,的终边上任意一点的坐标是,它与原点的距离是 ,则,, 3、三角函数在各象限的符号:一全正,二正弦,三余弦,四正切 4、同角三角函数的基本关系: 5、三角函数的诱导公式:推导口诀:奇变偶不变,符号看象限 的正弦、余弦,等于的同名函数,前面加上把看成锐角时该函数的符号; 符号看象限,函数名不变 ,, ,, ,, ,, 的正弦、余弦,等于的余名函数,前面加上把看成锐角时该函数的符号。 符号看象限,函数名不变 ,, , , ,, ,, 8、同角三角函数的基本关系式 ,=. 9、两角和与差的正弦、余弦和正切公式: ⑴ ⑵ ⑶ ⑷ ⑸变形 (6)变形 10、辅助角公式:,其中 ,, 11、二倍角公式 . . 公式变形: . 12、三角函数的周期 函数,x∈R及函数,x∈R(A,ω,为常数,且A≠0,ω>0)的周期; 函数,(A,ω,为常数,且A≠0,ω>0)的周期. 13、 函数的图象变换 函数的图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象 横坐标平移和伸缩只针对于x,x的系数用括号隔开 14、正弦函数、余弦函数和正切函数的图象与性质: 函 数 性 质 图象 定义域 值域 最值 当,; 当, 当x=2k时,; 当,. 既无最大值也无最小值 周期性 奇偶性 奇函数 偶函数 奇函数 单调性 上增;上减 上增;在上减 在上增 对称性 对称中心 对称轴 对称中心 对称轴 对称中心 无对称轴 15、正弦定理:在中,、、分别为角的对边,为的外接圆的半径,则 有 16、余弦定理:,, 推论: 17、三角形面积公式: 18、三角形内角和定理 在△ABC中,有 , 平面向量 1、向量加法运算: ⑴三角形法则的特点:首尾相连,首指尾 ⑵平行四边形法则的特点:首首相连,对角线 (3)坐标运算:设,,则 2、向量减法运算: ⑴三角形法则的特点:首首相连,指被减 ⑵坐标运算:设,,则 设A,B,则 3、向量数乘运算: ⑴实数与向量的积是一个向量的运算叫做向量的数乘,记作 ① ②当时,的方向与的方向相同; 当时,的方向与的方向相反; 当时, (2)坐标运算:设,则 4、向量共线定理:向量与共线,当且仅当有唯一一个实数,使 设,,其中,则当且仅当时,向量、共线 5、平面向量的数量积: ⑴.零向量与任一向量的数量积为 ⑵性质:设和都是非零向量,则① ②当与同向时, 当与反向时, 或 ③ 坐标运算:设两个非零向量,,则 若,则,或 6、两向量的夹角公式 设=,=,且,则 7、向量的平行与垂直 . . 数列 1、数列的通项公式与前n项的和的关系 ( 数列的前n项的和为). 2、等差数列: 性质:等差中项:若a、b、c成等差,则2b=a+c 若(、、、),则; 若(、、),则 前项和的公式:① ② 3、等比数列: 性质:等比中项:若,,成等比数列,则 若,则; 若,则 前项和的公式: 4、数列求和的方法:(1)套用公式法: ①等差数列求和公式: ②等比数列求和公式: (2)裂项相消法: (3)分组求和法:等差+等比 (4)错位相减法:等差*等比 (5)倒序相加法 不等式 1.基本不等式: 若,,则,即 变形 ① ② 2、已知都是正数,则有,当时等号成立。 (1)若积是定值,则当时和有最小值; (2)若和是定值,则当时积有最大值. 立体几何初步 柱体、锥体、台体的表面积与体积 (1)几何体表面积公式(为底面周长,为高,为母线): (2)柱体、锥体、台体的体积公式: (3)球体的表面积和体积公式: 1、证明直线与直线平行的方法 (1)三角形中位线 (2)平行四边形(一组对边平行且相等) 2、证明直线与平面平行的方法 (1)直线与平面平行的判定定理(证平面外一条直线与平面内的一条直线平行) (2)先证面面平行 3、证明平面与平面平行的方法 平面与平面平行的判定定理(一个平面内的两条相交直线分别与另一平面平行) 4、证明直线与直线异面垂直的方法 转化为证明直线与平面垂直 5、证明直线与平面垂直的方法 (1)直线与平面垂直的判定定理(直线与平面内两条相交直线垂直) (2)平面与平面垂直的性质定理(两个平面垂直,一个平面内垂直交线的直线垂直另一个平面) 6、证明平面与平面垂直的方法 平面与平面垂直的判定定理(一个平面内有一条直线与另一个平面垂直) 7、异面直线所成角、直线与平面所成角、二面角的平面角的定义及计算 8、点到平面距离的计算(定义法、等体积法) 9、直棱柱、正棱柱、长方体、正方体的性质:侧棱平行且相等,与底面垂直。 正棱锥的性质:侧棱相等,顶点在底面的射影是底面正多边形的中心。 直线与方程 1、直线的斜率 过两点的直线的斜率公式: 2、直线方程 ①点斜式:直线斜率,且过点 ②斜截式:,直线斜率为,直线在轴上的截距为 ③两点式:()直线两点, ④截矩式:,其中直线与轴、轴的截距分别为 ⑤一般式:(不全为0) 3、两直线平行与垂直 若, ; 4、两点间距离公式: 5、点到直线距离公式: (点,直线:). 6、两平行直线距离公式: 圆的方程 1、圆的方程 (1)标准方程,圆心,半径为 (2)一般方程 (3)圆的参数方程 . 2、直线与圆的位置关系: 直线与圆的位置关系有相离,相切,相交三种情况,判断方法: 设直线,圆, ; ; . 弦长= 圆心到的距离为; 3、圆与圆的位置关系:通过两圆半径的和(差),与圆心距()之间的大小比较来确定 设圆, 当时 ,两圆外离 当时 ,两圆外切 当时 ,两圆相交 当时,两圆内切 当时,两圆内含 当时,为同心圆 圆锥曲线 1、椭圆:平面内与两个定点,的距离之和等于常数(大于)的点的轨迹称为椭圆 即:,这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距 几何性质: 焦点的位置 焦点在轴上 焦点在轴上 图形 标准方程 轴长 短轴的长 长轴的长 顶点 、 、 焦点 、 、 焦距 对称性 关于轴、轴、原点对称 离心率 2、双曲线:平面内与两个定点,的距离之差的绝对值等于常数(小于)的点的轨迹 即:这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距双曲线的方程与渐近线方程的关系 (1)若双曲线方程为渐近线方程:. (2)若渐近线方程为双曲线可设为. (3)若双曲线与有公共渐近线,可设为(,焦点在x轴上,,焦点在y轴上). 几何性质: 焦点的位置 焦点在轴上 焦点在轴上 图形 标准方程 顶点 、 、 焦点 、 、 焦距 对称性 关于轴、轴对称,关于原点中心对称 离心率 渐近线方程 3、抛物线:平面内与一个定点和一条定直线的距离相等的点的轨迹.定点称为抛物线的焦点,定直线称为抛物线的准线 抛物线上的点到焦点距离等于它到准线的距离记为P. 几何性质: 标准方程 图形 顶点 对称轴 轴 轴 焦点 准线方程 离心率 抛物线的焦半径公式 抛物线焦半径.(抛物线上的点到焦点距离等于它到准线的距离。) 过抛物线焦点的弦长. 七、概率统计 1、平均数、方差、标准差的计算 平均数: 方差: 标准差: 50、回归直线方程 ,其中. 2、独立性检验 3、古典概型的计算(必须要用列举法、列表法、树状图的方法把所有基本事件表示出来,不重复、不遗漏) 八、复数 1、复数的除法运算 . 2、复数的模==. 九、参数方程、极坐标化成直角坐标 十、绝对值不等式 1.绝对值三角不等式 如果a,b是实数,则, 2.绝对值不等式的解法 (1)含绝对值的不等式|x|<a与|x|>a的解集: 不等式 a>0 a=0 a<0 |x|<a {x|-a<x<a} ∅ ∅ |x|>a {x|x>a或x<-a} {x|x∈R且x≠0} R (2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法: ①|ax+b|≤c⇔-c≤ax+b≤c; ②|ax+b|≥c⇔ax+b≥c或ax+b≤-c. - 14 -
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服