资源描述
集体备课记录表7
时 间
2010年4月20日
地 点
教导处
学 科
数 学
年 级
六年级
主发言人
陈必举
发言主题
第七单元《统计》
教学注意点
参加人员
程焕祝 陈建飞 顾明光 陈必举
讨
论
内
容
讨
论
内
容
一、第七单元《统计》教学注意点:
陈必举 :
本单元教学扇形统计图、众数和中位数,扇形统计图过去是选学内容,现在是基本的教学内容,而众数和中位数是根据《标准》的要求新增加的教学内容。扇形统计图能直观地表示出各个部分的数量分别是总数量的百分之几,众数和中位数都是统计量,在平均数不能有效地反映出一组数据的基本特点时,往往选用众数或中位数来表达数据的特点。
1.以百分数的知识为基础,教学扇形统计图。
例1教学扇形统计图,分两步进行。第一步从整体到部分认识扇形统计图,让学生观察我国陆地地形分布情况统计图,体会图中的数据信息的具体含义,理解这张统计图用一个圆表示我国陆地的总面积,用五个扇形分别表示平原、盆地、高原、丘陵、山地各占国土总面积的百分之几。由于五种地形所占总面积的百分比不同,所以五个扇形的大小不同。教材及时指出,这样的统计图叫做扇形统计图,它能清楚地表示出各部分的数量与总数量之间的关系。经过这一步教学,学生知道扇形统计图与条形统计图、折线统计图相比,不仅形状不同,而且表达的数据内容也不相同。第二步根据已知的我国国土总面积,利用扇形统计图里的数据,分别算出五种地形的面积并填入统计表,进一步体会扇形统计图的特点。由于计算比较复杂,所以使用计算器。
2.联系现实的素材,教学众数和中位数。
例2用表格呈现9个学生每人用20粒黄豆种子做发芽试验的结果,先看表在括号里填数,感受发芽17粒的人数最多,有5人。然后把9个数据依次排列,指出17出现的次数最多,是这组数据的众数。教学这一段内容,首先要形成正确的众数概念——数据中出现次数最多的那个数。在发芽结果的数据中,17出现了5次,17是出现次数最多的数,5是它出现的次数,这组数据的众数是17,不是5。其次要知道求众数的方法——在一组数据中寻找出现次数最多的那个数。不管这个数出现了几次,只要比其他数出现的次数多,它就是这组数据的众数。例题还要求计算这组数据的平均数,联系实际比较平均数和众数的意义,体会它们是两个不同的概念,进一步理解众数。第79页“练一练”第1题通过找出一组学生的年龄的众数,巩固众数概念和求众数的方法。第2题在解决实际问题时应用了众数,鞋店上周销售皮鞋中,25.5cm这个尺码的皮鞋售出的双数最多,25.5是这组数据的众数,所以进货时要多一些这个尺码的男鞋。
例3要求学生评价7号男生的跳绳成绩在这组同学中的位置,有的学生可能根据算出的平均每人跳117下,认为7号男生跳的比平均数少。有的学生可能把7号男生跳的下数与其他男生比较,得出他的成绩是第三名。这些都是学生利用原有的知识、经验进行的比较。为什么7号男生跳的下数比平均数少,成绩还是第三名?为了解决这个疑问,例题先教学中位数的知识,指出把这组数据按大小排列,正中间的一个数102是这组数据的中位数,既揭示了中位数的含义,又讲了求中位数的方法。再把7号男生的成绩与中位数比,看到尽管他跳的下数比平均数少,却比中位数大,在这9个男生中的名次还是比较靠前的,初步体会中位数与平均数是两个不同的统计量。例题还要学生思考为什么这组数据的平均数比中位数多得多,这是由于2号和8号男生的成绩十分突出,远远多于其他男生跳的下数,他俩的优异成绩使男生跳绳的平均数大了,而多数男生的跳绳成绩都低于这个水平。所以,如果一组数据里存在特别大或者特别小的极端数据,平均数往往不能准确地表达这组数据的整体状况,这时用中位数表示这组数据更合适。
例4求10个女生跳绳成绩的中位数,这组数据的个数是双数。教材指出,正中间有两个数,中位数是这两个数的平均数,并要求学生算出这组数据的中位数,学会求这种情况的中位数的方法。然后把各个女生的成绩分别与中位数比较,体会用中位数能评价每个数据在整体里的地位。
二、 课时计划(见教案)
三、 作业(以配套补充习题为主、课本及机动补充习题见教案为辅)
四、 调整意见:
课本练习题 尽量安排在课堂上辅导完成,结合本班学生掌握情况相机安排一些课本作业(整理巩固)。
配套补充习题 按课时完成相应部分的练习。
展开阅读全文