1、高考数学压轴题1椭圆的中心是原点O,它的短轴长为,相应于焦点()的准线与x轴相交于点,过点的直线与椭圆相交于、两点。 (1)求椭圆的方程;(2)若,求直线的方程;(3)设(),过点且平行于准线的直线与椭圆相交于另一点,证明. (14分)(1)解:由题意,可设椭圆的方程为。 由已知得解得所以椭圆的方程为,离心率。(2)解:由(1)可得A(3,0)。设直线PQ的方程为。由方程组得,依题意,得。设,则, 。 由直线PQ的方程得。于是。 ,。 由得,从而。所以直线PQ的方程为或(3,理工类考生做)证明:。由已知得方程组注意,解得因,故。而,所以。2 已知函数对任意实数x都有,且当时,。(1) 时,求的
2、表达式。(2) 证明是偶函数。(3) 试问方程是否有实数根?若有实数根,指出实数根的个数;若没有实数根,请说明理由。f(x)= (2kx2k+2, kZ) 略 方程在1,4上有4个实根3(本题满分12分)如图,已知点F(0,1),直线L:y=-2,及圆C:。(1) 若动点M到点F的距离比它到直线L的距离小1,求动点M的轨迹E的方程;(2) 过点F的直线g交轨迹E于G(x1,y1)、H(x2,y2)两点,求证:x1x2 为定值;(3) 过轨迹E上一点P作圆C的切线,切点为A、B,要使四边形PACB的面积S最小,求点P的坐标及S的最小值。x2=4y x1x2=-4 P(2,1) SMIN=4.以椭
3、圆1(a1)短轴一端点为直角顶点,作椭圆内接等腰直角三角形,试判断并推证能作出多少个符合条件的三角形.解:因a1,不防设短轴一端点为B(0,1)设BCykx1(k0)则AByx1 把BC方程代入椭圆,是(1a2k2)x22a2kx0|BC|,同理|AB|由|AB|BC|,得k3a2k2ka210(k1)k2(1a2)k10 k1或k2(1a2)k10当k2(1a2)k10时,(a21)24由0,得1a由0,得a,此时,k1故,由0,即1a时有一解由0即a时有三解 5 已知,二次函数f(x)ax2bxc及一次函数g(x)bx,其中a、b、cR,abc,abc0.()求证:f(x)及g(x)两函数
4、图象相交于相异两点;()设f(x)、g(x)两图象交于A、B两点,当AB线段在x轴上射影为A1B1时,试求|A1B1|的取值范围. 解:依题意,知a、b0abc且abc0a0且c0 ()令f(x)g(x),得ax22bxc0.(*)4(b2ac)a0,c0,ac0,0f(x)、g(x)相交于相异两点 ()设x1、x2为交点A、B之横坐标则|A1B1|2|x1x2|2,由方程(*),知|A1B1|2 ,而a0, 4()21(3,12)|A1B1|(,2) 6 已知两点M(2,0),N(2,0),动点P在y轴上的射影为H,是2和的等比中项。(1) 求动点P的轨迹方程,并指出方程所表示的曲线;(2)
5、 若以点M、N为焦点的双曲线C过直线x+y=1上的点Q,求实轴最长的双曲线C的方程。解:(1)设动点的坐标为P(x,y),则H(0,y),=(2x,y)=(2x,y)=(2x,y)(2x,y)=由题意得PH2=2即即,所求点P的轨迹为椭圆由已知求得N(2,0)关于直线x+y=1的对称点E(1,1),则QE=QN双曲线的C实轴长2a=(当且仅当Q、E、M共线时取“=”),此时,实轴长2a最大为所以,双曲线C的实半轴长a=又双曲线C的方程式为7已知数列an满足 (1)求数列bn的通项公式; (2)设数列bn的前项和为Sn,试比较Sn与的大小,并证明你的结论.(1) (2)8已知焦点在轴上的双曲线C
6、的两条渐近线过坐标原点,且两条渐近线与以点为圆心,1为半径的圆相切,又知C的一个焦点与A关于直线对称()求双曲线C的方程;()设直线与双曲线C的左支交于A,B两点,另一直线经过M(-2,0)及AB的中点,求直线在轴上的截距b的取值范围; ()若Q是双曲线C上的任一点,为双曲线C的左,右两个焦点,从引的平分线的垂线,垂足为N,试求点N的轨迹方程解:()设双曲线C的渐近线方程为y=kx,则kx-y=0该直线与圆相切,双曲线C的两条渐近线方程为y=x2分故设双曲线C的方程为又双曲线C的一个焦点为 ,双曲线C的方程为4分()由得令直线与双曲线左支交于两点,等价于方程f(x)=0在上有两个不等实根因此 解得又AB中点为,直线l的方程为6分令x=0,得,8分()若Q在双曲线的右支上,则延长到T,使,若Q在双曲线的左支上,则在上取一点T,使根据双曲线的定义,所以点T在以为圆心,2为半径的圆上,即点T的轨迹方程是 10分由于点N是线段的中点,设,则,即代入并整理得点N的轨迹方程为12分9. 对任意都有()求和的值()数列满足:=+,数列是等差数列吗?请给予证明;试比较与的大小解:()因为所以2分令,得,即4分()又5分两式相加所以,7分又故数列是等差数列9分()10分12分所以14分第 8 页 共 8 页