ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:416.01KB ,
资源ID:1155637      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1155637.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(清华老师绝密高考数学压轴题完全解析.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

清华老师绝密高考数学压轴题完全解析.doc

1、高考数学压轴题1椭圆的中心是原点O,它的短轴长为,相应于焦点()的准线与x轴相交于点,过点的直线与椭圆相交于、两点。 (1)求椭圆的方程;(2)若,求直线的方程;(3)设(),过点且平行于准线的直线与椭圆相交于另一点,证明. (14分)(1)解:由题意,可设椭圆的方程为。 由已知得解得所以椭圆的方程为,离心率。(2)解:由(1)可得A(3,0)。设直线PQ的方程为。由方程组得,依题意,得。设,则, 。 由直线PQ的方程得。于是。 ,。 由得,从而。所以直线PQ的方程为或(3,理工类考生做)证明:。由已知得方程组注意,解得因,故。而,所以。2 已知函数对任意实数x都有,且当时,。(1) 时,求的

2、表达式。(2) 证明是偶函数。(3) 试问方程是否有实数根?若有实数根,指出实数根的个数;若没有实数根,请说明理由。f(x)= (2kx2k+2, kZ) 略 方程在1,4上有4个实根3(本题满分12分)如图,已知点F(0,1),直线L:y=-2,及圆C:。(1) 若动点M到点F的距离比它到直线L的距离小1,求动点M的轨迹E的方程;(2) 过点F的直线g交轨迹E于G(x1,y1)、H(x2,y2)两点,求证:x1x2 为定值;(3) 过轨迹E上一点P作圆C的切线,切点为A、B,要使四边形PACB的面积S最小,求点P的坐标及S的最小值。x2=4y x1x2=-4 P(2,1) SMIN=4.以椭

3、圆1(a1)短轴一端点为直角顶点,作椭圆内接等腰直角三角形,试判断并推证能作出多少个符合条件的三角形.解:因a1,不防设短轴一端点为B(0,1)设BCykx1(k0)则AByx1 把BC方程代入椭圆,是(1a2k2)x22a2kx0|BC|,同理|AB|由|AB|BC|,得k3a2k2ka210(k1)k2(1a2)k10 k1或k2(1a2)k10当k2(1a2)k10时,(a21)24由0,得1a由0,得a,此时,k1故,由0,即1a时有一解由0即a时有三解 5 已知,二次函数f(x)ax2bxc及一次函数g(x)bx,其中a、b、cR,abc,abc0.()求证:f(x)及g(x)两函数

4、图象相交于相异两点;()设f(x)、g(x)两图象交于A、B两点,当AB线段在x轴上射影为A1B1时,试求|A1B1|的取值范围. 解:依题意,知a、b0abc且abc0a0且c0 ()令f(x)g(x),得ax22bxc0.(*)4(b2ac)a0,c0,ac0,0f(x)、g(x)相交于相异两点 ()设x1、x2为交点A、B之横坐标则|A1B1|2|x1x2|2,由方程(*),知|A1B1|2 ,而a0, 4()21(3,12)|A1B1|(,2) 6 已知两点M(2,0),N(2,0),动点P在y轴上的射影为H,是2和的等比中项。(1) 求动点P的轨迹方程,并指出方程所表示的曲线;(2)

5、 若以点M、N为焦点的双曲线C过直线x+y=1上的点Q,求实轴最长的双曲线C的方程。解:(1)设动点的坐标为P(x,y),则H(0,y),=(2x,y)=(2x,y)=(2x,y)(2x,y)=由题意得PH2=2即即,所求点P的轨迹为椭圆由已知求得N(2,0)关于直线x+y=1的对称点E(1,1),则QE=QN双曲线的C实轴长2a=(当且仅当Q、E、M共线时取“=”),此时,实轴长2a最大为所以,双曲线C的实半轴长a=又双曲线C的方程式为7已知数列an满足 (1)求数列bn的通项公式; (2)设数列bn的前项和为Sn,试比较Sn与的大小,并证明你的结论.(1) (2)8已知焦点在轴上的双曲线C

6、的两条渐近线过坐标原点,且两条渐近线与以点为圆心,1为半径的圆相切,又知C的一个焦点与A关于直线对称()求双曲线C的方程;()设直线与双曲线C的左支交于A,B两点,另一直线经过M(-2,0)及AB的中点,求直线在轴上的截距b的取值范围; ()若Q是双曲线C上的任一点,为双曲线C的左,右两个焦点,从引的平分线的垂线,垂足为N,试求点N的轨迹方程解:()设双曲线C的渐近线方程为y=kx,则kx-y=0该直线与圆相切,双曲线C的两条渐近线方程为y=x2分故设双曲线C的方程为又双曲线C的一个焦点为 ,双曲线C的方程为4分()由得令直线与双曲线左支交于两点,等价于方程f(x)=0在上有两个不等实根因此 解得又AB中点为,直线l的方程为6分令x=0,得,8分()若Q在双曲线的右支上,则延长到T,使,若Q在双曲线的左支上,则在上取一点T,使根据双曲线的定义,所以点T在以为圆心,2为半径的圆上,即点T的轨迹方程是 10分由于点N是线段的中点,设,则,即代入并整理得点N的轨迹方程为12分9. 对任意都有()求和的值()数列满足:=+,数列是等差数列吗?请给予证明;试比较与的大小解:()因为所以2分令,得,即4分()又5分两式相加所以,7分又故数列是等差数列9分()10分12分所以14分第 8 页 共 8 页

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服