收藏 分销(赏)

苏教七年级下册期末解答题压轴数学测试试题答案.doc

上传人:丰**** 文档编号:11279071 上传时间:2025-07-14 格式:DOC 页数:22 大小:2MB 下载积分:10 金币
下载 相关 举报
苏教七年级下册期末解答题压轴数学测试试题答案.doc_第1页
第1页 / 共22页
苏教七年级下册期末解答题压轴数学测试试题答案.doc_第2页
第2页 / 共22页


点击查看更多>>
资源描述
苏教七年级下册期末解答题压轴数学测试试题精选答案 一、解答题 1.解读基础: (1)图1形似燕尾,我们称之为“燕尾形”,请写出、、、之间的关系,并说明理由; (2)图2形似8字,我们称之为“八字形”,请写出、、、之间的关系,并说明理由: 应用乐园:直接运用上述两个结论解答下列各题 (3)①如图3,在中,、分别平分和,请直接写出和的关系  ; ②如图4,  . (4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,,求和的度数. 2.如图,已知直线a∥b,∠ABC=100°,BD平分∠ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P.问∠1的度数与∠EPB的度数又怎样的关系? (特殊化) (1)当∠1=40°,交点P在直线a、直线b之间,求∠EPB的度数; (2)当∠1=70°,求∠EPB的度数; (一般化) (3)当∠1=n°,求∠EPB的度数(直接用含n的代数式表示). 3.如图,在中,与的角平分线交于点. (1)若,则 ; (2)若,则 ; (3)若,与的角平分线交于点,的平分线与的平分线交于点,,的平分线与的平分线交于点,则 . 4.如图,,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,. (1)= ; (2)如图2,点C、D是、角平分线上的两点,且,求 的度数; (3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,,且,求n的值. 5.已知,,点为射线上一点. (1)如图1,写出、、之间的数量关系并证明; (2)如图2,当点在延长线上时,求证:; (3)如图3,平分,交于点,交于点,且:,,,求的度数. 6.如图,,点在直线上,点在直线和之间,,平分. (1)求的度数(用含的式子表示); (2)过点作交的延长线于点,作的平分线交于点,请在备用图中补全图形,猜想与的位置关系,并证明; (3)将(2)中的“作的平分线交于点”改为“作射线将分为两个部分,交于点”,其余条件不变,连接,若恰好平分,请直接写出__________(用含的式子表示). 7.如图1,将一副三角板与三角板摆放在一起;如图2,固定三角板,将三角板绕点A按顺时针方向旋转,记旋转角(). (1)当________度时,;当________度时; (2)当的一边与的某一边平行(不共线)时,直接写出旋转角的所有可能的度数; (3)当,连接,利用图4探究的度数是否发生变化,并给出你的证明. 8.模型规律:如图1,延长交于点D,则.因为凹四边形形似箭头,其四角具有“”这个规律,所以我们把这个模型叫做“箭头四角形”. 模型应用 (1)直接应用: ①如图2,,则__________; ②如图3,__________; (2)拓展应用: ①如图4,、的2等分线(即角平分线)、交于点,已知,,则__________; ②如图5,、分别为、的10等分线.它们的交点从上到下依次为、、、…、.已知,,则__________; ③如图6,、的角平分线、交于点D,已知,则__________; ④如图7,、的角平分线、交于点D,则、、之同的数量关系为__________. 9.如图,直线MN∥GH,直线l1分别交直线MN、GH于A、B两点,直线l2分别交直线MN、GH于C、D两点,且直线l1、l2交于点E,点P是直线l2上不同于C、D、E点的动点. (1)如图①,当点P在线段CE上时,请直写出∠NAP、∠HBP、∠APB之间的数量关系:   ; (2)如图②,当点P在线段DE上时,(1)中的∠NAP、∠HBP、∠APB之间的数量关系还成立吗?如果成立,请说明成立的理由;如果不成立,请写出这三个角之间的数量关系,并说明理由. (3)如果点P在直线l2上且在C、D两点外侧运动时,其他条件不变,请直接写出∠NAP、∠HBP、∠APB之间的数量关系   . 10.(1)思考探究:如图,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,已知∠ABC=70°,∠ACD=100°.求∠A和∠P的度数. (2)类比探究:如图,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,已知∠P=n°.求∠A的度数(用含n的式子表示). (3)拓展迁移:已知,在四边形ABCD中,四边形ABCD的内角∠ABC与外角∠DCE的平分线所在直线相交于点P,∠P=n°,请画出图形;并探究出∠A+∠D的度数(用含n的式子表示). 【参考答案】 一、解答题 1.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); . 【分析】 (1)根据三角形外角等于不相邻的两个内角之和即可得出结论; (2)根据三角形内角和定理及对顶角相等即可得出结 解析:(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); . 【分析】 (1)根据三角形外角等于不相邻的两个内角之和即可得出结论; (2)根据三角形内角和定理及对顶角相等即可得出结论; (3)①根据角平分线的定义及三角形内角和定理即可得出结论; ②连结BE,由(2)的结论及四边形内角和为360°即可得出结论; (4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论. 【详解】 (1).理由如下: 如图1,,,,; (2).理由如下: 在中,,在中,,,; (3)①,,、分别平分和,,. 故答案为:. ②连结. ∵,. 故答案为:; (4)由(1)知,,,,,,,,,,,; . 【点睛】 本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键. 2.(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当 解析:(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|. 【分析】 (1)利用外角和角平分线的性质直接可求解; (2)分三种情况讨论:①当交点P在直线b的下方时;②当交点P在直线a,b之间时;③当交点P在直线a的上方时;分别画出图形求解; (3)结合(2)的探究,分两种情况得到结论:①当交点P在直线a,b之间时;②当交点P在直线a上方或直线b下方时; 【详解】 解:(1)∵BD平分∠ABC, ∴∠ABD=∠DBC=∠ABC=50°, ∵∠EPB是△PFB的外角, ∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°; (2)①当交点P在直线b的下方时: ∠EPB=∠1﹣50°=20°; ②当交点P在直线a,b之间时: ∠EPB=50°+(180°﹣∠1)=160°; ③当交点P在直线a的上方时: ∠EPB=∠1﹣50°=20°; (3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|; ②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|; 【点睛】 考查知识点:平行线的性质;三角形外角性质.根据动点P的位置,分类画图,结合图形求解是解决本题的关键.数形结合思想的运用是解题的突破口. 3.(1)110(2)(90 +n)(3)×90°+n° 【分析】 (1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可; (2)根据BO、CO分别是∠ABC与∠ACB的角平 解析:(1)110(2)(90 +n)(3)×90°+n° 【分析】 (1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可; (2)根据BO、CO分别是∠ABC与∠ACB的角平分线,用n°的代数式表示出∠OBC与∠OCB的和,再根据三角形的内角和定理求出∠BOC的度数; (3)根据规律直接计算即可. 【详解】 解:(1)∵∠A=40°, ∴∠ABC+∠ACB=140°, ∵点O是∠AB故答案为:110°;C与∠ACB的角平分线的交点, ∴∠OBC+∠OCB=70°, ∴∠BOC=110°. (2)∵∠A=n°, ∴∠ABC+∠ACB=180°-n°, ∵BO、CO分别是∠ABC与∠ACB的角平分线, ∴∠OBC+∠OCB=∠ABC+∠ACB =(∠ABC+∠ACB) =(180°﹣n°) =90°﹣n°, ∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+n°. 故答案为:(90+n); (3)由(2)得∠O=90°+n°, ∵∠ABO的平分线与∠ACO的平分线交于点O1, ∴∠O1BC=∠ABC,∠O1CB=∠ACB, ∴∠O1=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=×180°+n°, 同理,∠O2=×180°+n°, ∴∠On=×180°+ n°, ∴∠O2017=×180°+n°, 故答案为:×90°+n°. 【点睛】 本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180°. 4.(1)100;(2)75°;(3)n=3. 【分析】 (1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB 解析:(1)100;(2)75°;(3)n=3. 【分析】 (1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB; (2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,,然后根据三角形外角的性质解答即可; (3)设BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,从而,又∠FKN=∠F+∠FAK,得,即可求n. 【详解】 解:(1)如图:过O作OP//MN, ∵MN//GHl ∴MN//OP//GH ∴∠NAO+∠POA=180°,∠POB+∠OBH=180° ∴∠NAO+∠AOB+∠OBH=360° ∵∠NAO=116°,∠OBH=144° ∴∠AOB=360°-116°-144°=100°; (2)分别延长AC、CD交GH于点E、F, ∵AC平分且, ∴, 又∵MN//GH, ∴; ∵, ∵BD平分, ∴, 又∵ ∴; ∴; (3)设FB交MN于K, ∵,则; ∴ ∵, ∴,, 在△FAK中,, ∴, ∴. 经检验:是原方程的根,且符合题意. 【点睛】 本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键. 5.(1),证明见解析;(2)证明见解析;(3). 【分析】 (1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG; (2)设CD与AE交于点H 解析:(1),证明见解析;(2)证明见解析;(3). 【分析】 (1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG; (2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG; (3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=α+5°,再根据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,求得α=70°,即可根据三角形内角和定理,得到∠EKD的度数. 【详解】 解:(1)∠AED=∠EAF+∠EDG.理由:如图1, 过E作EH∥AB, ∵AB∥CD, ∴AB∥CD∥EH, ∴∠EAF=∠AEH,∠EDG=∠DEH, ∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG; (2)证明:如图2,设CD与AE交于点H, ∵AB∥CD, ∴∠EAF=∠EHG, ∵∠EHG是△DEH的外角, ∴∠EHG=∠AED+∠EDG, ∴∠EAF=∠AED+∠EDG; (3)∵AI平分∠BAE, ∴可设∠EAI=∠BAI=α,则∠BAE=2α, 如图3,∵AB∥CD, ∴∠CHE=∠BAE=2α, ∵∠AED=20°,∠I=30°,∠DKE=∠AKI, ∴∠EDI=α+30°-20°=α+10°, 又∵∠EDI:∠CDI=2:1, ∴∠CDI=∠EDK=α+5°, ∵∠CHE是△DEH的外角, ∴∠CHE=∠EDH+∠DEK, 即2α=α+5°+α+10°+20°, 解得α=70°, ∴∠EDK=70°+10°=80°, ∴△DEK中,∠EKD=180°-80°-20°=80°. 【点睛】 本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和. 6.(1);(2)画图见解析,,证明见解析;(3)或 【分析】 (1)根据平行线的传递性推出,再利用平行线的性质进行求解; (2)猜测,根据平分,推导出,再根据、平分,通过等量代换求解; (3)分两种情 解析:(1);(2)画图见解析,,证明见解析;(3)或 【分析】 (1)根据平行线的传递性推出,再利用平行线的性质进行求解; (2)猜测,根据平分,推导出,再根据、平分,通过等量代换求解; (3)分两种情况进行讨论,即当与,充分利用平行线的性质、角平分线的性质、等量代换的思想进行求解. 【详解】 (1)过点作, , , , . (2)根据题意,补全图形如下: 猜测, 由(1)可知:, 平分, , , , , 又平分, , , . (3)①如图1, , 由(2)可知:, , , , , , , , , , 又平分, , ; ②如图2, ,(同①); 若, 则有, 又, , , , 综上所述:或, 故答案是:或. 【点睛】 本题考查了平行线的性质、角平分线、三角形内角和定理、垂直等相关知识点,解题的关键是掌握相关知识点,作出适当的辅助线,通过分类讨论及等量代换进行求解. 7.(1)105,15;(2)旋转角的所有可能的度数是:15°,45°,105°,135°,150°;(3),保持不变;见解析 【分析】 (1)三角板ADE顺时针旋转后的三角板为,当时,,则可求得旋转角 解析:(1)105,15;(2)旋转角的所有可能的度数是:15°,45°,105°,135°,150°;(3),保持不变;见解析 【分析】 (1)三角板ADE顺时针旋转后的三角板为,当时,,则可求得旋转角度;当∥BC时,,则可求得旋转角度; (2)分五种情况考虑:AD∥BC,DE∥AB,DE∥BC,DE∥AC,AE∥BC,即可分别求出旋转角; (3)设BD分别交、于点M、N,利用三角形的内外角的相等关系分别得出:及,由的内角和为180°,即可得出结论. 【详解】 (1)三角板ADE顺时针旋转后的三角板为,当时,如图, ∵,∠EAD=45° ∴ 即旋转角 当时,如图,则 ∴=45°-30°=15° 即旋转角° 故答案为:105,15 (2)当的一边与的某一边平行(不共线)时,有五种情况 当AD∥BC时,由(1)知旋转角为15°; 如图(1),当DE∥AB时,旋转角为45°; 当DE∥BC时,由AD⊥DE,则有AD⊥BC,此时由(1)知,旋转角为105°; 如图(2),当DE∥AC时,则旋转角为135°; 如图(3),当AE∥BC时,则旋转角为150°; 所以旋转角的所有可能的度数是:15°,45°,105°,135°,150° (3)当,,保持不变; 理由如下: 设BD分别交、于点M、N,如图 在中, , , 【点睛】 本题考查了图形旋转的性质,三角形内角和定理,三角形的外角与不相邻的两个内角的相等关系等知识,注意旋转的三要素:旋转中心,旋转方向和旋转角度. 8.(1)①110;②260;(2)①85;②110;③142;④∠B-∠C+2∠D=0 【分析】 (1)①根据题干中的等式直接计算即可; ②同理可得∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DO 解析:(1)①110;②260;(2)①85;②110;③142;④∠B-∠C+2∠D=0 【分析】 (1)①根据题干中的等式直接计算即可; ②同理可得∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DOE,代入计算即可; (2)①同理可得∠BO1C=∠BOC-∠OBO1-∠OCO1,代入计算可得; ②同理可得∠BO7C=∠BOC-(∠BOC-∠A),代入计算即可; ③利用∠ADB=180°-(∠ABD+∠BAD)=180°-(∠BOC-∠C)计算可得; ④根据两个凹四边形ABOD和ABOC得到两个等式,联立可得结论. 【详解】 解:(1)①∠BOC=∠A+∠B+∠C=60°+20°+30°=110°; ②∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DOE=2×130°=260°; (2)①∠BO1C=∠BOC-∠OBO1-∠OCO1 =∠BOC-(∠ABO+∠ACO) =∠BOC-(∠BOC-∠A) =∠BOC-(120°-50°) =120°-35° =85°; ②∠BO7C=∠BOC-(∠BOC-∠A) =120°-(120°-50°) =120°-10° =110°; ③∠ADB=180°-(∠ABD+∠BAD) =180°-(∠BOC-∠C) =180°-(120°-44°) =142°; ④∠BOD=∠BOC=∠B+∠D+∠BAC, ∠BOC=∠B+∠C+∠BAC, 联立得:∠B-∠C+2∠D=0. 【点睛】 本题主要考查了新定义—箭头四角形,利用了三角形外角的性质,还考查了角平分线的定义,图形类规律,解题的关键是理解箭头四角形,并能熟练运用其性质. 9.(1)∠APB=∠NAP+∠HBP;(2)见解析;(3)∠HBP=∠NAP+∠APB 【分析】 (1)过P点作PQ∥GH,根据平行线的性质即可求解; (2)过P点作PQ∥GH,根据平行线的性质即可求 解析:(1)∠APB=∠NAP+∠HBP;(2)见解析;(3)∠HBP=∠NAP+∠APB 【分析】 (1)过P点作PQ∥GH,根据平行线的性质即可求解; (2)过P点作PQ∥GH,根据平行线的性质即可求解; (3)根据平行线的性质和三角形外角的性质即可求解. 【详解】 解:(1)如图①,过P点作PQ∥GH, ∵MN∥GH, ∴MN∥PQ∥GH, ∴∠APQ=∠NAP,∠BPQ=∠HBP, ∵∠APB=∠APQ+∠BPQ, ∴∠APB=∠NAP+∠HBP, 故答案为:∠APB=∠NAP+∠HBP; (2)如图②,过P点作PQ∥GH, ∵MN∥GH, ∴MN∥PQ∥GH, ∴∠APQ+∠NAP=180°,∠BPQ+∠HBP=180°, ∵∠APB=∠APQ+∠BPQ, ∴∠APB=(180°﹣∠NAP)+(180°﹣∠HBP)=360°﹣(∠NAP+∠HBP); (3)如备用图, ∵MN∥GH, ∴∠PEN=∠HBP, ∵∠PEN=∠NAP+∠APB, ∴∠HBP=∠NAP+∠APB. 故答案为:∠HBP=∠NAP+∠APB. 【点睛】 此题考查了平行公理的推论:平行于同一条直线的两直线平行,以及平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟记定理是解题的关键. 10.(1)∠A=30°,∠P=15°;(2)∠A=2n°;(3)画图见解析;∠A+∠D=180°+2n°或180°﹣2n°. 【分析】 (1) 根据三角形内角和定理可以算出∠A的大小,再根据角平分线的性 解析:(1)∠A=30°,∠P=15°;(2)∠A=2n°;(3)画图见解析;∠A+∠D=180°+2n°或180°﹣2n°. 【分析】 (1) 根据三角形内角和定理可以算出∠A的大小,再根据角平分线的性质和三角形的一个外角等于与它不相邻的两个内角的和可得∠PCD=∠P+∠PBC,即可得解; (2)和(1)证明方法类似,先证明∠A+∠ABC=2(∠P+∠PBC),再证明∠A=2∠P即可得到答案; (3) 延长BA交CD的延长线于F根据三角形内角和定理和三角形的一个外角等于与它不相邻的两个内角的和,即可得到第一种情况;延长AB交DC的延长线于F,同理即可得到答案. 【详解】 解:(1)∠A=30°,∠P=15° ∵∠ACD+∠ACB=180°,∠ACD=100° ∴∠ACB=80°, ∵∠ABC+∠ACB+∠A=180°(三角形内角和定理), 又∵∠ABC=70°, ∴∠A=30°, ∵P点是∠ABC和外角∠ACD的角平分线的交点, ∴∠PCD=∠ACD=50°,∠PBC=∠ABC=35° ∵∠PBC+∠PCB+∠P=180°,∠PCB+∠PCD=180° ∴∠PCD=∠PBC+∠P ∴∠P=50°-35°=15° (2)结论:∠A=2n°,理由如下: ∵∠PCD=∠P+∠PBC,∠ACD=∠A+∠ABC(三角形的一个外角等于与它不相邻的两个内角和), 又∵P点是∠ABC和外角∠ACD的角平分线的交点, ∴∠ACD=2∠PCD,∠ABC=2∠PBC, ∴∠A+∠ABC=2(∠P+∠PBC)(等量替换), ∴∠A+∠ABC=2∠P+2∠PBC, ∴∠A+∠ABC=2∠P+∠ABC(等量替换), ∴∠A=2∠P; ∴∠A=2n° (3)(Ⅰ)如图②延长BA交CD的延长线于F. ∵∠F=180°﹣∠FAD﹣∠FDA =180°﹣(180°﹣∠A)﹣(180°﹣∠D) =∠A+∠D﹣180°, 由(2)可知:∠F=2∠P=2n°, ∴∠A+∠D=180°+2n°。 (Ⅱ)如图③,延长AB交DC的延长线于F. ∵∠F=180°﹣∠A﹣∠D,∠P=∠F, ∴∠P=(180°﹣∠A﹣∠D)=90°﹣(∠A+∠D). ∴∠A+∠D=180°﹣2n° 综上所述:∠A+∠D=180°+2n°或180°﹣2n° ; 【点睛】 本题主要考查三角形综合题,三角形内角和定理、四边形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用已知结论解决问题,属于中考常考题型.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服