收藏 分销(赏)

单排行星齿轮机构的运动分析.docx

上传人:仙人****88 文档编号:11257974 上传时间:2025-07-11 格式:DOCX 页数:7 大小:19.94KB 下载积分:10 金币
下载 相关 举报
单排行星齿轮机构的运动分析.docx_第1页
第1页 / 共7页
单排行星齿轮机构的运动分析.docx_第2页
第2页 / 共7页


点击查看更多>>
资源描述
单排行星齿轮机构的运动分析 The movement analysis of single planetary-gear mechanism 龚文资 GONG Wen-zi (无锡商业职业技术学院,无锡 214153) 摘 要:从自由度、约束、瞬心等基本知识点入手,分析了对单排行星齿轮机构的传动比及方向进行确 定的三种方法,为自动变速器的运动分析及维修提供理论依据。 关键词:自由度;约束;瞬心;太阳轮;行星架 中图分类号:TH132  文献标识码:A   文章编号:1009-0134(2011)11(上)-0154-03 Doi: 10.3969/j.issn.1009-0134.2011.11(上).45 0 引言 汽车自动变速器普遍采用行星齿轮传动机 构,通常由2~3个单排行星齿轮机构组成。在汽 车自动变速器的维修过程中,必须对各档位的动 力传递及运动性质进行分析。行星齿轮机构的运 动分析方法主要有三种:1)特性方程式计算法; 2)定轴轮系转化法;3)速度三角形法。 1 单排行星齿轮机构的组成 如图1所示,单排行星齿轮机构由太阳轮、 齿圈和装有行星齿轮的行星架等三个基本元件组 成。行星轮在此起惰轮的作用,通常为3~6个, 对传动比没有影响。三个元件共同绕公共轴线回 转。安装于行星架上的行星齿轮与齿圈和太阳轮 相啮合;行星齿轮既可以绕其本身轴线自转,也 可以在齿圈内绕公共轴线公转。 图1 单排行星齿轮机构的组成 2 单排行星齿轮机构的运动分析 2.1 单排行星齿轮机构的自由度分析 作平面运动的机构,当原动件(动力输入件) 的数目等于该机构的自由度时,才能够有确定的运 动并实现动力输出。机构自由度计算公式:F=3n- 2PL- PH,其中:F为机构自由度、n为活动元件数、 PL为两元件通过面接触组成的运动低副、PH为两元 件通过点或线接触组成的运动高副。 如图2所示,在单排行星齿轮机构中:活动 元件数n=4;低副数PL=4;高副数PH=2;自由度 F=3×4-2×4-1×2=2。即单排行星齿轮机构 中,如果其中一个自由度不被限制(即约束), 且只有一个动力输入件和一个动力输出件,则行 星齿轮机构无法传递动力。 图2 单排行星齿轮机构的摩擦副及行星轮的受力分析 2.2 单排行星齿轮机构的特性方程式 在图2中,设太阳轮、齿圈、行星架的转速分 别为n1、n2、n3,齿数分别Zs、Zr、Zc,齿圈与太阳 收稿日期:2011-09-28 作者简介:龚文资(1968 -),男,湖南双峰人,本科,副教授,主要从事汽车电子控制技术方面的研究及汽车专业的 教学工作。 第33卷 第10期 2011-11(上) 【155】 轮的齿数比Zr /Zs=α。对行星齿轮作受力分析,则 行星齿轮所受到的作用力F1、F2、F3则如图2所示。 作用于太阳轮上的力矩M1=F1R1。 作用于齿圈上的力矩M2=F2R2。 作用于行星架上的力矩M3=F3R3。 α=Zr /Zs= R2 / R1,则R2=αR1。 又R3=(R1+R2)/2=(1+α)R1/2。 由行星轮的力平衡条件可得 F1=F2 F3=-2F1 因此,太阳轮、齿圈、行星架上的力矩分别为: M1=F1R1 (1) M2=αF1R1 (2) M3=-(1+α)F1R1 (3) 根据能量守恒定律,三个元件上输入和输出 的功率的代数和应等于零,即 M1ω1+M2ω2+M3ω3=0 式中ω1、ω2、ω3分别为太阳轮、齿圈、行 星架的角速度。 将(1)、(2)、(3)式的M1、M2、M3代 入即得 ω1+αω2-(1+α)ω3=0 若以转速代替角速度,则上式可写成 n1+αn2-(1+α)n3=0 此方程是三元一次方程式,三个未知数,这 也反映了单排行星齿轮机构有两个自由度。要使 行星排的任二元件间有确定的传动关系,必须再 加一个关系方程式。也就是说,对于具有两个自 由度的单排行星齿轮机构,必须对某一旋转元件 加一约束,使该机构只有一个自由度,才能实现 动力传递。 2.3 单排行星齿轮机构的定轴轮系转化 行星齿轮机构属于旋转轮系。在行星齿轮机 构中,通常将除输入元件和输出元件之外的约束 元件进行固定,这时可将旋转轮系转化为定轴轮 系进行传动比的分析,如图3所示。这时,行星 架在转化中被量化为一个最大的齿轮,其抽象齿 数为太阳轮与齿圈齿数之和,即Zc=Zs+Zr。传动 比按定轴轮系计算,转动方向按相互接触的元件 (太阳轮或齿圈与行星架)传动时方向相同、相 互隔开的元件(太阳轮与齿圈)传动时方向相反 来确定。 图3 行星架齿数的量化 V-车速 n-车轮转速 o-瞬心 o’-车轮中心 A、B、C-车轮上3点 图4 车轮运动的瞬心与速度三角形分析 2.4 单排行星齿轮机构的速度三角形分析法 2.4.1 瞬心 作平面运动的物体(在一个平面内边滚动边 移动),其上各点在瞬间都是围绕着某个瞬间不 动的点在作纯转动运动,这个瞬间不动的点即 为该物体的瞬间回转中心(瞬心),其位置可以 在物体内,也可以在物体外,甚至可以在无限远 处,并随时间的改变而改变。 如图4所示,车轮在路面上运动时有三种状 态:纯滚动、边滚边滑、车轮抱死。在图4(a) 中,当车轮在路面上作纯滚动时,在瞬间车轮上 的每一点都是以轮胎和路面的接触点为中心而回 转的,该点即为瞬心O。在图4(b)中,如果已 知车轮中心的线速度V(V=2πRn),按照速度三 角形关系便可以快捷地推导出车轮上各点瞬时的 线速度的大小及方向。图中VA、VB、VC的大小与 该点到瞬心的距离成正比,方向为连线的切线方 向。在图4(c)中,为车轮制动滑移时瞬心发生 【156】 第33卷 第10期 2011-11(上) 转移的情况,车轮与地面的接触点D的线速度为 VD。在图4(d)中,车轮制动抱死时瞬心在无穷 远处,车轮上各点的线速度都相等。 2.4.2 速度三角形分析法在单排行星矢轮机构上的应 用 单排行星齿轮机构的运动与车轮相似。在如 图5所示的单排行星齿轮机构中,如以太阳轮作 为动力输入元件,线速度为Vs;固定齿圈;行星 架作为动力输出元件,线速度为Vc。根据瞬心及 Vs就可确定动力输出元件行星架的线速度Vc的 大小及方向。三个元件都以轮系中心轴为公共回 转中心,连接公共回转中心及输入Vs的终端并延 长与输出Vc相交,该连接延长线我们称之为等速 线,相交点所形成的线速度Vd是以公共回转中心 为圆心、与输入元件等角速的虚拟线速度。意即 Vs与Vd的线速度大小与到公共回转中心的半径距 离成正比,也就是说Vs与Vd相对应的角速度是相 等的。由上可知,由于Vd>Vc,且方向相同,因 此,该传动为前进档的减速传动。 单排行星齿轮传动机构的其他方案分析方法 与此类似,在此不再重复。 图5 单排行星齿轮机构的速度三角形分析 3 结束语 自动变速器的维修是汽车维修中的难点。在 检修自动变速器时,一般要求解体检修前即确定 故障的大致部位,这就要求维修人员能借助技术 资料分析其输入输出元件的转动方向及传动比的 大小。上述三种方法适用于不同知识层次的维修 人员进行运动分析__
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服