资源描述
1、(本题满分10分)
(第1题图)
A
x
y
B
C
O
如图,在平面直角坐标系中,抛物线=-++经过A(0,-4)、B(,0)、 C(,0)三点,且-=5.
(1)求、的值;(4分)
(2)在抛物线上求一点D,使得四边形BDCE是以BC为对 角线的菱形;(3分)
(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.(3分)
2、(本小题满分10分)
已知点A(a,)、B(2a,y)、C(3a,y)都在抛物线上.
(1)求抛物线与x轴的交点坐标;
(2)当a=1时,求△ABC的面积;
(3)是否存在含有、y、y,且与a无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.
y
x
O
第3题图
D
E
C
F
A
B
3、如图所示,在平面直角坐标系中,矩形的边在轴的负半轴上,边在轴的正半轴上,且,,矩形绕点按顺时针方向旋转后得到矩形.点的对应点为点,点的对应点为点,点的对应点为点,抛物线过点.
(1)判断点是否在轴上,并说明理由;
(2)求抛物线的函数表达式;
(3)在轴的上方是否存在点,点,使以点为顶点的平行四边形的面积是矩形面积的2倍,且点在抛物线上,若存在,请求出点,点的坐标;若不存在,请说明理由.
A
O
x
y
B
F
C
图4
4、如图4,在平面直角坐标系中,直线与轴交于点,与轴交于点,抛物线经过三点.
(1)求过三点抛物线的解析式并求出顶点的坐标;
(2)在抛物线上是否存在点,使为直角三角形,若存在,直接写出点坐标;若不存在,请说明理由;
(3)试探究在直线上是否存在一点,使得的周长最小,若存在,求出点的坐标;若不存在,请说明理由.
5、如图5,已知半径为1的与轴交于两点,为的切线,切点为,圆心的坐标为,二次函数的图象经过两点.
(1)求二次函数的解析式;
图5
y
x
O
A
B
M
O1
(2)求切线的函数解析式;
(3)线段上是否存在一点,使得以为顶点的三角形与相似.若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.
6、(12分)
中,,,cm.长为1cm的线段在的边上沿方向以1cm/s的速度向点运动(运动前点与点重合).过分别作的垂线交直角边于两点,线段运动的时间为s.
(1)若的面积为,写出与的函数关系式(写出自变量的取值范围);
(2)线段运动过程中,四边形有可能成为矩形吗?若有可能,求出此时的值;若不可能,说明理由;
(3)为何值时,以为顶点的三角形与相似?
7、已知:如图14,抛物线与轴交于点,点,与直线相交于点,点,直线与轴交于点.
(1)写出直线的解析式.
(2)求的面积.
(3)若点在线段上以每秒1个单位长度的速度从向运动(不与重合),同时,点在射线上以每秒2个单位长度的速度从向运动.设运动时间为秒,请写出的面积与的函数关系式,并求出点运动多少时间时,的面积最大,最大面积是多少?
8、(10分)某工厂要赶制一批抗震救灾用的大型活动板房.如图,板房一面的形状是由矩形和抛物线的一部分组成,矩形长为12m,抛物线拱高为5.6m.
(1)在如图所示的平面直角坐标系中,求抛物线的表达式.
(2)现需在抛物线AOB的区域内安装几扇窗户,窗户的底边在AB上,每扇窗户宽1.5m,高1.6m,相邻窗户之间的间距均为0.8m,左右两边窗户的窗角所在的点到抛物线的水平距离至少为0.8m.请计算最多可安装几扇这样的窗户?
9、本题满分11分.
如图11所示,在梯形ABCD中,已知AB∥CD, AD⊥DB,AD=DC=CB,AB=4.以AB所在直线为轴,过D且垂直于AB的直线为轴建立平面直角坐标系.
(1)求∠DAB的度数及A、D、C三点的坐标;
(2)求过A、D、C三点的抛物线的解析式及其对称轴L.
(3)若P是抛物线的对称轴L上的点,那么使PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由)
10、将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边
AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD.
(1)填空:如图9,AC= ,BD= ;四边形ABCD是 梯形.
(2)请写出图9中所有的相似三角形(不含全等三角形).
(3)如图10,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图10的平面直角坐标系,保持ΔABD不动,将ΔABC向轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值值范围.
E
D
C
H
F
G
B
A
P
y
x
图10
10
D
C
B
A
E
图9
11、已知抛物线与轴的一个交点为A(-1,0),与y轴的正半轴交于点C.
⑴直接写出抛物线的对称轴,及抛物线与轴的另一个交点B的坐标;
⑵当点C在以AB为直径的⊙P上时,求抛物线的解析式;
⑶坐标平面内是否存在点,使得以点M和⑵中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由.
12、如图,将置于平面直角坐标系中,其中点为坐标原点,点的坐标为,.
(1)若的外接圆与轴交于点,求点坐标.
D
C
O
A
B
x
y
(2)若点的坐标为,试猜想过的直线与的外接圆的位置关系,并加以说明.
(3)二次函数的图象经过点和且顶点在圆上,
求此函数的解析式.
13、如图,直角梯形中,∥,为坐标原点,点在轴正半轴上,点在轴正半轴上,点坐标为(2,2),∠= 60°,于点.动点从点出发,沿线段向点运动,动点从点出发,沿线段向点运动,两点同时出发,速度都为每秒1个单位长度.设点运动的时间为秒.
(1) 求的长;
(2) 若的面积为(平方单位). 求与之间的函数关系式.并求为何值时,的面积最大,最大值是多少?
(3) 设与交于点.①当△为等腰三角形时,求(2)中的值.
②探究线段长度的最大值是多少,直接写出结论.
14、(本题满分12分)如图14-1,是一张放在平面直角坐标系中的矩形纸片,为原点,点在轴的正半轴上,点在轴的正半轴上,,.
(1)在边上取一点,将纸片沿翻折,使点落在边上的点处,求两点的坐标;
(2)如图14-2,若上有一动点(不与重合)自点沿方向向点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为秒(),过点作的平行线交于点,过点作的平行线交于点.求四边形的面积与时间之间的函数关系式;当取何值时,有最大值?最大值是多少?
(3)在(2)的条件下,当为何值时,以为顶点的三角形为等腰三角形,并求出相应的时刻点的坐标.
y
x
B
C
O
A
D
E
图14-1
y
x
B
C
O
A
D
E
图14-2
P
M
N
15、(本小题10分)
已知抛物线,
(Ⅰ)若,,求该抛物线与轴公共点的坐标;
(Ⅱ)若,且当时,抛物线与轴有且只有一个公共点,求的取值范围;
(Ⅲ)若,且时,对应的;时,对应的,试判断当时,抛物线与轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.
16、(本小题满分8分)探索研究
x
l
Q
C
P
A
O
B
H
R
y
如图,在直角坐标系中,点为函数在第一象限内的图象上的任一点,点的坐标为,直线过且与轴平行,过作轴的平行线分别交轴,于,连结交轴于,直线交轴于.
(1)求证:点为线段的中点;
(2)求证:①四边形为平行四边形;
②平行四边形为菱形;
(3)除点外,直线与抛物线有无其它公共点?并说明理由.
9
展开阅读全文