资源描述
椭圆知识点
知识要点小结:
知识点一:椭圆的定义
平面内一个动点到两个定点、的距离之和等于常 ,这个动点的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.
注意:若,则动点的轨迹为线段;
若,则动点的轨迹无图形.
知识点二:椭圆的标准方程
1.当焦点在轴上时,椭圆的标准方程:,其中
2.当焦点在轴上时,椭圆的标准方程:,其中;
3.椭圆的参数方程
注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;
2.在椭圆的两种标准方程中,都有和;
3.椭圆的焦点总在长轴上.
当焦点在轴上时,椭圆的焦点坐标为,;
当焦点在轴上时,椭圆的焦点坐标为,
知识点三:椭圆的简单几何性质
椭圆:的简单几何性质
(1)对称性:对于椭圆标准方程:说明:把换成、或把换成、或把、同时换成、、原方程都不变,所以椭圆是以轴、轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
(2)范围:
椭圆上所有的点都位于直线和所围成的矩形内,所以椭圆上点的坐标满足,。
(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
②椭圆与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为 ,,,
③线段,分别叫做椭圆的长轴和短轴,,。和分别叫做椭圆的长半轴长和短半轴长。
(4)离心率:
①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用表示,记作。
②因为,所以的取值范围是。越接近1,则就越接近,从而越小,因此椭圆越扁;反之,越接近于0,就越接近0,从而越接近于,这时椭圆就越接近于圆。 当且仅当时,,这时两个焦点重合,图形变为圆,方程为。
注意: 椭圆的图像中线段的几何特征(如下图):(1);;;
l ;;;
(3);;;
知识点四:椭圆第二定义
一动点到定点的距离和它到一条定直线的距离的比是一个内常数,那么这个点的轨迹叫做椭圆 其中定点叫做焦点,定直线叫做准线,常数就是离心率
左准线 右准线
知识点五:椭圆的焦半径公式:
(左焦半径) (右焦半径) 其中是离心率
焦点在y轴上的椭圆的焦半径公式:
( 其中分别是椭圆的下上焦点)
知识点六:直线与椭圆问题(韦达定理的运用)
弦长公式:若直线与圆锥曲线相交与、两点,则
弦长
知识点七:椭圆 与 的区别和联系
标准方程
图形
性质
焦点
,
,
焦距
范围
,
,
对称性
关于轴、轴和原点对称
顶点
,
,
轴长
长轴长=,短轴长=
离心率
准线方程
焦半径
,
,
注意:椭圆,的相同点:形状、大小都相同;参数间的关系都有和,;不同点:两种椭圆的位置不同;它们的焦点坐标也不相同。
规律方法:
1.如何确定椭圆的标准方程?
任何椭圆都有一个对称中心,两条对称轴。当且仅当椭圆的对称中心在坐标原点,对称轴是坐标轴,椭圆的方程才是标准方程形式。此时,椭圆焦点在坐标轴上。
确定一个椭圆的标准方程需要三个条件:两个定形条件;一个定位条件焦点坐标,由焦点坐标的形式确定标准方程的类型。
2.椭圆标准方程中的三个量的几何意义
椭圆标准方程中,三个量的大小与坐标系无关,是由椭圆本身的形状大小所确定的。分别表示椭圆的长半轴长、短半轴长和半焦距长,均为正数,且三个量的大小关系为:,,且。
可借助右图理解记忆:
显然:恰构成一个直角三角形的三条边,其中a是斜边,b、c为两条直角边。
3.如何由椭圆标准方程判断焦点位置
椭圆的焦点总在长轴上,因此已知标准方程,判断焦点位置的方法是:看,的分母的大小,哪个分母大,焦点就在哪个坐标轴上。
4.方程是表示椭圆的条件
方程可化为,即,所以只有A、B、C同号,且AB时,方程表示椭圆。当时,椭圆的焦点在轴上;当时,椭圆的焦点在轴上。
5.求椭圆标准方程的常用方法:
①待定系数法:由已知条件确定焦点的位置,从而确定椭圆方程的类型,设出标准方程,再由条件确定方程中的参数的值。其主要步骤是“先定型,再定量”;
②定义法:由已知条件判断出动点的轨迹是什么图形,然后再根据定义确定方程。
6.共焦点的椭圆标准方程形式上的差异
共焦点,则c相同。与椭圆共焦点的椭圆方程可设为,此类问题常用待定系数法求解。
7.判断曲线关于轴、轴、原点对称的依据:
① 若把曲线方程中的换成,方程不变,则曲线关于轴对称;
② 若把曲线方程中的换成,方程不变,则曲线关于轴对称;
③ 若把曲线方程中的、同时换成、,方程不变,则曲线关于原点对称。
8.如何求解与焦点三角形△PF1F2(P为椭圆上的点)有关的计算问题?
思路分析:与焦点三角形△PF1F2有关的计算问题时,常考虑到用椭圆的定义及余弦定理(或勾股定理)、三角形面积公式相结合的方法进行计算解题。
将有关线段,有关角 ()结合起来,建立、之间的关系.
9.如何计算椭圆的扁圆程度与离心率的关系?
长轴与短轴的长短关系决定椭圆形状的变化。离心率,因为,,用表示为。
显然:当越小时,越大,椭圆形状越扁;当越大,越小,椭圆形状越趋近于圆。
经典例题:
一、椭圆的定义
例1、已知F1(-8,0),F2(8,0),动点P满足|PF1|+|PF2|=16,则点P的轨迹为( )
A 圆 B 椭圆 C线段 D 直线
例2、椭圆左右焦点为F1、F2,CD为过F1的弦,则⊿CDF2的周长为______
二、椭圆的标准方程
例3、已知方程表示椭圆,则k的取值范围是( )
A -1<k<1 B k>0 C k≥0 D k>1或k<-1
例4、已知方程+=1,表示焦点在y轴上的椭圆,则m的取值范围为 .
例5、求满足以下条件的椭圆的标准方程
(1)长轴长为10,短轴长为6
(2)长轴是短轴的2倍,且过点(2,1)
(3) 经过点(5,1),(3,2)
例6、若⊿ABC顶点B、C坐标分别为(-4,0),(4,0),AC、AB边上的中线长之和为30,求⊿ABC的重心G的轨迹方程。
例7、 已知动圆过定点,且在定圆的内部与其相内切,求动圆圆心的轨迹方程.
例8、已知点在以坐标轴为对称轴的椭圆上,点到两焦点的距离分别为和,过点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.
三、离心率
例9、椭圆的左右焦点分别是F1、F2,过点F1作x轴的垂线交椭圆于P点。若∠F1PF2=60°,则椭圆的离心率为_________
例10、已知正方形ABCD,则以A、B为焦点,且过C、D两点的椭圆的的离心率为______
例11、椭圆与轴正向交于点,若这个椭圆上总存在点,使(为坐标原点),求其离心率的取值范围.
四、最值问题
例12、椭圆两焦点为F1、F2,点P在椭圆上,则|PF1|·|PF2|的最大值为_____,最小值为_____
例14、已知椭圆,A(1,0),P为椭圆上任意一点,求|PA|的最大值和最小值。
六、直线和椭圆
例16、已知直线l:y=2x+m,椭圆C:,试问当m为何值时:
(1)有两个不重合的公共点;
(2)有且只有一个公共点;
(3)没有公共点.
例17、已知斜率为1的直线l经过椭圆的右焦点,交椭圆于A、B两点,求弦AB的长.
例18、已知椭圆及直线.
(1)当为何值时,直线与椭圆有公共点?
(2)若直线被椭圆截得的弦长为,求直线的方程.
例19、已知椭圆C:,直线l:y=kx+1,与C交于AB两点,k为何值时,OA⊥OB
例20、 已知椭圆,(1)求过点且被平分的弦所在直线的方程;
(2)求斜率为2的平行弦的中点轨迹方程;
(3)过引椭圆的割线,求截得的弦的中点的轨迹方程;
(4)椭圆上有两点、,为原点,且有直线、斜率满足,
求线段中点的轨迹方程.
11
展开阅读全文