收藏 分销(赏)

1.1.1简单组合体.doc

上传人:人****来 文档编号:10781062 上传时间:2025-06-13 格式:DOC 页数:4 大小:125KB 下载积分:5 金币
下载 相关 举报
1.1.1简单组合体.doc_第1页
第1页 / 共4页
1.1.1简单组合体.doc_第2页
第2页 / 共4页


点击查看更多>>
资源描述
课堂教学设计 备课人 授课时间 课题 §1.1.1柱、锥、台、球的结构特征 教 学 目 标 知识与技能 能根据几何结构特征对空间物体进行分类 通过实物操作,增强学生的直观感知概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征 过程与方法 启发引导,充分发挥学生的主体作用 情感态度价值观 使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。 重点 让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征 难点 柱、锥、台、球的结构特征的概括 教 学 设 计 教学内容 教学环节与活动设计 (一)创设情景,揭示课题 1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。 2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。 (二)、研探新知 1.棱柱、棱锥的结构特征: ① 提问:举例生活中有哪些实例给我们以两个面平行的形象? ② 讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有哪些公共特征?把这些几何体用水平力推斜后,仍然有哪些公共特征? 1 教 学 设 计 教学内容 教学环节与活动设计 ③ 定义:有两个面互相平行,其余各 面都是四边形,且每相邻两个四边形的 公共边都互相平行,由这些面所围成的 几何体叫棱柱. → 列举生活中的棱柱实例 (三棱镜、方砖、六角螺帽). 结合图形认识:底面、侧面、 侧棱、顶点、高、对角面、对角线. ④ 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等. 表示:棱柱ABCDE-A’B’C’D’E’ ⑤ 讨论:埃及金字塔具有什么几何特征? ⑥ 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥. 结合图形认识:底面、侧面、侧棱、顶点、高. → 讨论:棱锥如何分类及表示? ⑦ 讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质? 棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形 棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方. 2. 圆柱、圆锥的结构特征: ① 讨论:圆柱、圆锥如何形成? ② 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥. → 列举生活中的棱柱实例 →结合图形认识:底面、轴、侧面、母线、高. → 表示方法 ③ 讨论:棱柱与圆柱、棱柱与棱锥的共同特征? → 柱体、锥体. ④ 观察书P2若干图形,找出相应几何体; 举例:生活中的柱体、锥体. 3.教学棱台与圆台的结构特征: ① 讨论:用一个平行于底面的平面去截柱体和锥体,所得几何体有何特征? 结合图形认识:上下底面、侧面、侧棱(母线)、顶点、高. 讨论:棱台的分类及表示? 圆台的表示?圆台可如何旋转而得? 2.棱柱的任何两个平面都可以作为棱柱的底面吗? 3.课本P8,习题1.1 A组第1题。 4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转? 5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢? (四)、巩固深化 练习:课本P7 练习1、2(1)(2) 课本P8 习题1.1 第2、3、4题 2 教 学 设 计 教学内容 教学环节与活动设计 ② 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分叫做棱台;用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台. →列举生活中的实例 ③ 讨论:棱台、圆台分别具有一些什么几何性质? 棱台:两底面所在平面互相平行;两底面是对应边互相平行的相似多 边形;侧面是梯形;侧棱的延长线相交于一点. 圆台:两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延长线交于一点;母线长都相等. ④ 讨论:棱、圆与柱、锥、台的组合得到6个几何体. 棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥有什么关系? (以台体的上底面变化为线索) 4.教学球体的结构特征: ① 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体,叫球体. →列举生活中的实例 结合图形认识:球心、半径、直径. → 球的表示. ② 讨论:球有一些什么几何性质? ③ 讨论:球与圆柱、圆锥、圆台有何关系?(旋转体) 棱台与棱柱、棱锥有什么共性?(多面体) (三)、布置作业 课本P8 练习题1.1 B组第1题 课外练习 课本P8 习题1.1 B组第2题 教 学 小 结 柱、锥、台、球的结构特征的概括 课后 反思
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服