资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,抛物线的简单几何性质,X,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,定义:在平面内,与一个定点,F,和一条定直线,l,(,l,不经过点,F,),的,距离相等,的点的轨迹叫,抛物线,.,抛物线的定义及标准方程,准线方程,焦点坐标,标准方程,图 形,x,F,O,y,l,x,F,O,y,l,x,F,O,y,l,x,F,O,y,l,y,2,=-2px,(p0),x,2,=2py,(p0),y,2,=2px,(p0),x,2,=-2py,(p0),一、温故知新,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,范围,1,、,由抛物线,y,2,=2,px,(,p,0,),有,所以抛物线的范围为,二、探索新知,如何研究抛物线,y,2,=2,px,(,p,0,),的几何性质,?,抛物线在,y,轴的右侧,当,x,的值增大时,,y,也增大,这说明抛物线向右上方和右下方无限延伸。,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,对称性,2,、,关于,x,轴,对称,即点,(x,-y),也在抛物线上,故 抛物线,y,2,=2,px(p,0),关于,x,轴,对称,.,则,(-y,),2,=2,px,若点,(x,y,),在抛物线上,即满足,y,2,=2,px,,,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,顶点,3,、,定义:,抛物线与它的对称轴的交点叫做抛物线的顶点。,y,2,=2,px,(,p,0),中,,令,y=0,则,x=0.,即:抛物线,y,2,=2,px,(,p,0),的,顶点(,0,,,0,),.,只有一个,注,:,这与椭圆有四个顶点,双曲线有两个顶点不同。,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,离心率,4,、,P(x,y),抛物线上的点与焦点的距离和它到准线的距离之比,叫做,抛物线的离心率。,由定义知,抛物线,y,2,=2,px,(,p,0),的离心率为,e=1,.,下面请大家得出其余三种标准方程抛物线的几何性质。,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,(二)归纳:抛物线,的,几何性质,图 形,方程,焦点,准线,范围,顶点,对称轴,e,l,F,y,x,O,l,F,y,x,O,l,F,y,x,O,l,F,y,x,O,y,2,=2,px,(,p,0),y,2,=-2,px,(,p,0),x,2,=2,py,(,p,0),x,2,=-2,py,(,p,0),x0,yR,x0,yR,y0,xR,y,0,xR,(0,0),x,轴,y,轴,1,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,特点:,1.,抛物线只位于半个坐标平面内,虽然它可以无限延伸,但它没有渐近线,;,2.,抛物线只有一条对称轴,没有,对称中心,;,3.,抛物线只有一个顶点、,一个焦点、一条准线,;,4.,抛物线的离心率是确定的,为,1;,思考,:抛物线标准方程中的,p,对抛物线开口的影响,.,P(x,y),P,越大,开口越开阔,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,y,2,=2p,x,x,y,o,F,l,A,B,过焦点且垂直于对称轴的直线被抛物线截得的线段,AB,叫做抛物线的通径,,长度为,2p,P,越大,开口越阔,补充,(,1,)通径:,(标准方程中,2,p,的几何意义),利用抛物线的,顶点,、通径的两个,端点,可较准确画出反映抛物线基本特征的草图。,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,补充,(,1,)通径:,|PF|=,x,0,+p/2,x,O,y,F,P,通径的长度,:,2P,P,越大,开口越开阔,(,2,)焦半径:,连接抛物线任意一点与焦点的线段叫做抛物线的,焦半径,。,焦半径公式:,(标准方程中,2,p,的几何意义),Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,总结,抛物线只位于半个坐标平面内,虽然它也可以无限延伸,但没有渐近线;,抛物线只有一条对称轴,没有对称中心,;,抛物线的离心率是确定的,等于;,抛物线只有一个顶点,一个焦点,一条准线;,抛物线的通径为,2P,2p,越大,抛物线的张口越大,.,1,、范围:,2,、对称性:,3,、顶点:,4,、离心率:,5,、通径:,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,因为抛物线关于,x,轴对称,它的顶点在坐标原点,并且经过点,M,(,),,解,:,所以设方程为:,又因为点,M,在,抛物线上,:,所以:,因此所求抛物线标准方程为:,例,:已知抛物线关于,x,轴对称,它的顶点在坐标原点,并且经过点,M,(,),求,它的标准方程,.,三、典例精析,坐标轴,当焦点在,x(y),轴上,开口方向不定时,设为,y,2,=2mx(m,0,),(x,2,=2my(m0),可避免讨论,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,练习:,1,、已知抛物线的顶点在原点,对称轴为,x,轴,焦点在直线,3x-4y-12=0,上,那么抛物线通径长是,.,2,、已知点,A,(,-2,,,3,)与抛物线,的焦点的距离是,5,,则,P=,。,4,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,例,2,、斜率为,1,的直线 经过抛物线 的焦点,F,,,且与抛物线相交于,A,,,B,两点,求线段,AB,的长。,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,x,y,O,F,A,B,B,A,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,x,y,O,F,A,B,B,A,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,抛物线的焦点弦的特征,1,、已知,AB,是抛物线,y,2,2px,的任意一条焦点弦,且,A,(,x,1,,,y,1,)、,B,(,x,2,,,y,2,),1,)求证:,y,1,y,2,P,2,,,x,1,x,2,p,2,/,4,。,2,)设,为直线,AB,的倾斜角,求证:当,90,o,时,取得,AB,的,最小值,2p,。,3,)若弦,AB,过焦点,求证:以,AB,为直径的圆与准线相切。,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,四、归纳总结,抛物线只位于半个坐标平面内,虽然它也可以无限延伸,但没有渐近线;,抛物线只有一条对称轴,没有对称中心,;,抛物线的离心率是确定的,等于;,抛物线只有一个顶点,一个焦点,一条准线;,抛物线的通径为,2P,2p,越大,抛物线的张口越大,.,1,、范围:,2,、对称性:,3,、顶点:,4,、离心率:,5,、通径:,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,再见!,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,
展开阅读全文