收藏 分销(赏)

教学案例函数的奇偶性.doc

上传人:丰**** 文档编号:10645072 上传时间:2025-06-06 格式:DOC 页数:8 大小:53.55KB 下载积分:6 金币
下载 相关 举报
教学案例函数的奇偶性.doc_第1页
第1页 / 共8页
教学案例函数的奇偶性.doc_第2页
第2页 / 共8页


点击查看更多>>
资源描述
教学案例 函数的奇偶性 ---吕梁市岚县高级职业中学 李瑞 一、教学目标 1、通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力。 2、理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性。 3、在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的。 二、教学重点与难点 Ø 1、重点:函数奇偶性概念的形成和函数奇偶性的判断。 Ø 2、难点:函数奇偶性概念的探究与理解。 三、教法、学法 1、教法 Ø 以引导发现法为主,设疑诱导法为辅的教学模式 遵循研究函数性质的三步曲 2、学法 Ø 根据自主性和差异性原则 Ø 以促进学生发展为出发点 Ø 着眼于知识的形成和发展 Ø 着眼于学生的学习体验 四、教学安排 本节课计划用一课时进行讲解 五、教学过程 (一)问题情景 1、观察如下两图,思考并讨论以下问题: (1)这两个函数图像有什么共同特征? (2)相应的两个函数值对应表是如何体现这些特征的? 可以看到两个函数的图像都关于y轴对称.从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同. 对于函数f(x)=x2,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事实上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x).此时,称函数y=x2为偶函数. 2、观察函数f(x)=x和f(x)=的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征. 可以看到两个函数的图像都关于原点对称.函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈R都有f(-x)=-f(x).此时,称函数y=f(x)为奇函数. (二)建立模型、讲授新课 由上面的分析讨论引导学生建立奇函数、偶函数的定义 1、奇、偶函数的定义 如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫作奇函数. 如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫作偶函数. 2、提出问题,组织学生讨论 (1)如果定义在R上的函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗? (f(x)不一定是偶函数) (2)奇、偶函数的图像有什么特征? (奇、偶函数的图像分别关于原点、y轴对称) (3)奇、偶函数的定义域有什么特征? (奇、偶函数的定义域关于原点对称) (三)典型例题 1、判断下列函数的奇偶性。 注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1]. 2、已知:定义在R上的函数f(x)是奇函数,当x>0时,f(x)=x(1+x),求f(x)的表达式。 解:(1)任取x<0,则-x>0,∴f(-x)=-x(1-x), 而f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=x(1-x). (2)当x=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0. 3、已知:函数f(x)是偶函数,且在(-∞,0)上是减函数,判断f(x)在(0,+∞)上是增函数,还是减函数,并证明你的结论。 解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x)在(0,+∞)上是增函数,证明如下: 任取x1>x2>0,则-x1<-x2<0. ∵f(x)在(-∞,0)上是减函数,∴f(-x1)>f(-x2). 又f(x)是偶函数,∴f(x1)>f(x2). ∴f(x)在(0,+∞)上是增函数. 思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系? (四) 巩固提高 1、已知:函数f(x)是奇函数,在[a,b]上是增函数(b>a>0),问f(x)在[-b,-a]上的单调性如何。 2、函数f(x)=ax2+bx+c,(a,b,c∈R),当a,b,c满足什么条件时,(1)函数f(x)是偶函数.(2)函数f(x)是奇函数。 (五)拓展延伸 1、有既是奇函数,又是偶函数的函数吗?若有,有多少个? 2、 设f(x),g(x)分别是R上的奇函数,偶函数,试研究: (1)F(x)=f(x)·g(x)的奇偶性。 (2)G(x)=|f(x)|+g(x)的奇偶性。 课堂小结   1、函数奇偶性的概念。 2、判断函数奇偶性的步骤。 作业布置:课本P36页练习1、2题 板书设计 函数的奇偶性 1、偶函数定义 例1、 例2、 例3 2、奇函数定义 3、奇、偶函数的图像特征 4、定义域关于原点对称是函数 具备奇偶性的先决条件 教学反思 本科课教学内容的讲授由浅入深,由具体的函数图像及对应值表,抽象概括出了奇、偶函数的定义,符合学生的认知规律,有利于学生理解和掌握。典型例题的设计层层递进,深化了学生对奇、偶函数概念的理解和应用。拓展延伸为学生思维能力、创新能力的培养提供了平台。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服