1、教学案例
函数的奇偶性
---吕梁市岚县高级职业中学 李瑞
一、教学目标
1、通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力。
2、理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性。
3、在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的。
二、教学重点与难点 Ø
1、重点:函数奇偶性概念的形成和函数奇偶性的判断。 Ø
2、难点:函数奇偶性概念的探究与理解。
三、教法、学法
2、1、教法 Ø
以引导发现法为主,设疑诱导法为辅的教学模式
遵循研究函数性质的三步曲
2、学法 Ø
根据自主性和差异性原则 Ø
以促进学生发展为出发点 Ø
着眼于知识的形成和发展 Ø
着眼于学生的学习体验
四、教学安排
本节课计划用一课时进行讲解
五、教学过程
(一)问题情景
1、观察如下两图,思考并讨论以下问题:
(1)这两个函数图像有什么共同特征?
(2)相应的两个函数值对应表是如何体现这些特征的?
可以看到两个函数的图像都关于y轴对称.从函数值对应表可以看到,当自变量x取一对相反数时,相应的两
3、个函数值相同.
对于函数f(x)=x2,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事实上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x).此时,称函数y=x2为偶函数.
2、观察函数f(x)=x和f(x)=的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征.
可以看到两个函数的图像都关于原点对称.函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈R都有f(-x)=-f(x).此时,称函数y=f(x)为奇函数.
(二)建立模型、讲授新课
由上面
4、的分析讨论引导学生建立奇函数、偶函数的定义
1、奇、偶函数的定义
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫作奇函数.
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫作偶函数.
2、提出问题,组织学生讨论
(1)如果定义在R上的函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗?
(f(x)不一定是偶函数)
(2)奇、偶函数的图像有什么特征?
(奇、偶函数的图像分别关于原点、y轴对称)
(3)奇、偶函数的定义域有什么特征?
(奇、偶函数的定义域关于原点对称)
(三)典型例题
5、
1、判断下列函数的奇偶性。
注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1].
2、已知:定义在R上的函数f(x)是奇函数,当x>0时,f(x)=x(1+x),求f(x)的表达式。
解:(1)任取x<0,则-x>0,∴f(-x)=-x(1-x),
而f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=x(1-x).
(2)当x=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.
3、已知:函数f(x)是偶函数,且在(-∞,0)上是减函数,判断f(x)在(0,+∞)上是增函数,还是减函数,并证明你的结论。
解:先结合图像特征:偶函数的
6、图像关于y轴对称,猜想f(x)在(0,+∞)上是增函数,证明如下:
任取x1>x2>0,则-x1<-x2<0.
∵f(x)在(-∞,0)上是减函数,∴f(-x1)>f(-x2).
又f(x)是偶函数,∴f(x1)>f(x2).
∴f(x)在(0,+∞)上是增函数.
思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?
(四) 巩固提高
1、已知:函数f(x)是奇函数,在[a,b]上是增函数(b>a>0),问f(x)在[-b,-a]上的单调性如何。
2、函数f(x)=ax2+bx+c,(a,b,c∈R),当a,b,c满足什么条件时,(1)函数f(x)是偶函数.(2
7、函数f(x)是奇函数。
(五)拓展延伸
1、有既是奇函数,又是偶函数的函数吗?若有,有多少个?
2、 设f(x),g(x)分别是R上的奇函数,偶函数,试研究:
(1)F(x)=f(x)·g(x)的奇偶性。
(2)G(x)=|f(x)|+g(x)的奇偶性。
课堂小结
1、函数奇偶性的概念。
2、判断函数奇偶性的步骤。
作业布置:课本P36页练习1、2题
板书设计
函数的奇偶性
1、偶函数定义 例1、 例2、 例3
2、奇函数定义
3、奇、偶函数的图像特征
4、定义域关于原点对称是函数
具备奇偶性的先决条件
教学反思
本科课教学内容的讲授由浅入深,由具体的函数图像及对应值表,抽象概括出了奇、偶函数的定义,符合学生的认知规律,有利于学生理解和掌握。典型例题的设计层层递进,深化了学生对奇、偶函数概念的理解和应用。拓展延伸为学生思维能力、创新能力的培养提供了平台。