收藏 分销(赏)

拓展资源:黄金分割与斐波那契数列.doc

上传人:精**** 文档编号:10645037 上传时间:2025-06-06 格式:DOC 页数:1 大小:32.51KB 下载积分:5 金币
下载 相关 举报
拓展资源:黄金分割与斐波那契数列.doc_第1页
第1页 / 共1页
本文档共1页,全文阅读请下载到手机保存,查看更方便
资源描述
黄金分割与斐波那契数列 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比,其比值是一个无理数,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现: 1/0.618=1.618 (1-0.618)/0.618=0.618 这个数值体现在诸如绘画、雕塑、音乐、建筑等艺术领域,在管理、工程设计等方面也有着不可忽视的作用。 "斐波那契数列"指的是:1、1、2、3、5、8、13、21、34、55、89、144、…这些数被称为"斐波那契数"。特点是除前两个数(数值为1)之外,每个数都是它前面两个数之和。 斐波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个斐波那契数的比值是随序号的增加而逐渐趋于黄金比的。即f(n)/f(n-1)-→0.618…由于斐波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金比这个无理数。当我们继续计算出后面更大的斐波那契数时,就会发现相邻两数之比确实是非常接近黄金比的。 不仅如此,随便选两个整数,然后按照斐波那契数的规律排下去,两数之比也是会逐渐逼近黄金比的。 1
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服