资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,第24章圆知识体系复习,1,本章知识结构图,圆的基本性质,圆,圆的对称性,弧、弦圆心角之间的关系,同弧上的圆周角与圆心角的关系,与圆有关的位置关系,正多边形和圆,有关圆的计算,点和圆的位置关系,切线,直线和圆的位置关系,三角形的外接圆,三角形内切圆,等分圆,圆和圆的位置关系,弧长,扇形的面积,圆锥的侧面积和全面积,2,一.圆的基本概念:,1.圆的定义:到定点的距离等于定长的点的集合叫做圆.,2.有关概念:,(1)弦、直径(圆中最长的弦),(2)弧、优弧、劣弧、等弧,(3)弦心距,O,3,二.,圆的基本性质,1.圆的对称性:,(1)圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.圆有无数条对称轴.,(2)圆是中心对称图形,并且绕圆心旋转任何一个角度都能与自身重合,即圆具有旋转不变性.,4,2.垂径定理:,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.,A,D,B,P,C,CD是圆O的直径,CDAB,AP=BP,AC,BC,=,AD,BD,=,5,3.同圆或等圆中圆心角、弧、弦之间的关系:,(1)在同圆或等圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等.,(2)在圆中,如果弧相等,那么它所对的圆心角相等,所对的弦相等.,(3)在一个圆中,如果弦相等,那么它所对的弧相等,所对的圆心角相等.,A,B,D,C,O,COD=AOB,AB,CD,=,AB=CD,6,1、如图,已知O的半径OA长为5,弦AB的长8,OCAB于C,则OC的长为 _.,O,A,B,C,3,AC=BC,弦心距,半径,半弦长,7,反思:,在 O中,若 O的半径r、,圆心到弦的距离d、弦长a中,,任意知道两个量,可根据,定理求出第三个量:,C,D,B,A,O,2,:如图,圆O的弦AB8 ,,DC2,直径CEAB于D,,求半径OC的长。,垂径,直径MNAB,垂足为E,交弦CD于点F.,8,3、如图,P为O的弦BA延长线上一点,PAAB2,PO5,求O的半径。,辅助线,关于弦的问题,常常需要,过圆心作弦的垂线段,,这是一条非常重要的,辅助线,。,圆心到弦的距离、半径、弦长,构成,直角三角形,,便将问题转化为直角三角形的问题。,M,A,P,B,O,A,9,4.圆周角:,定义:顶点在圆周上,两边和圆相交的角,叫做圆周角.,性质:(1)在同一个圆中,同弧所对的圆周角等于它所对的圆心角的一半.,BAC=BOC,1,2,10,在同圆或等圆中,同弧或等弧所对的所有的圆周角相等.相等的圆周角所对的弧相等.,圆周角的性质(2),ADB与AEB,、ACB 是同弧所对的圆周角,ADB=AEB=ACB,11,性质 3:半圆或直径所对的圆周角都相等,都等于90,0,(直角).,性质4:90,0,的圆周角所对的弦是圆的直径.,AB是O的直径,ACB=90,0,圆周角的性质:,12,15,13,A,B,C,O,D,3.6,作圆的直径与找90度的圆周角也是圆里常用的辅助线,14,2.如图,AB是,O,的直径,BD,是,O,的弦,延长,BD,到点,C,使,DC,=,BD,连接,AC,交,O,与点,F.,(1),AB,与,AC,的大小有什么关,系?为什么?,(2)按角的大小分类,请你判断,ABC,属于哪一类三角形,,并说明理由,.(05宜昌),1.在O中,弦AB所对的圆心角AOB=100,则弦AB所对的圆周角为_.,(05年上海),50,0,或130,0,15,3.如图在比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同伴乙已经助攻冲到B点,此时甲是直接射门好,还是将球传给乙,让乙射门好?为什么?,P,Q,A,B,16,(2)点在圆上,(3)点在圆外,(1)点在圆内,1.点和圆的位置关系,A,C,B,如果规定点与圆心的距离为d,圆的半径为r,则d与r的大小关系为:,点与圆的位置关系,d与r的关系,点在圆内,点在圆上,点在圆外,dr,dr,dr,三.与圆有关的位置关系:,17,7.在Rt ABC中,C=90,BC=3cm,AC=4cm,D为AB的中点,E为AC的中点,以B为圆心,BC为半径作B,,问,:(1,)A、C、D、E与B的位置关系如何?,(2)AB、AC与B的位置关系如何?,E,D,C,A,B,18,2.如图,OA,是,O,的半径,已知,AB=OA,试探索当OAB,的大小如何变化时点,B,在圆内?点,B,在圆上?点,B,在圆外?,A,B,O,19,2.直线和圆的位置关系:,O,O,O,l,l,l,(1)相离:,(2)相切:,(3)相交:,一条直线与一个圆没有公共点,叫做直线与这个圆相离.,一条直线与一个圆只有一个公共点,叫做直线与这个圆相切.,一条直线与一个圆有两个公共点,叫做直线与这个圆相交.,20,O,O,l,(1)当直线与圆相离时dr;,(2)当直线与圆相切时d=r;,(3)当直线与圆相交时dr.,直线与圆位置关系的识别:,d,r,l,d,r,O,l,d,r,设圆的半径为,r,圆心到直线的距离为,d,则:,21,切线的识别方法,1.与圆有一个公共点的直线。,2.圆心到直线的距离等于圆的半径的直线是圆的切线。,3.经过半径的外端且垂直于这条半径的直线是圆的切线。,O,A,l,OA是半径,OA,l,直线,l是,O的切线.,22,切线的性质:,(1)圆的切线垂直于经过切点的半径.,(2)经过圆心垂直于切线的直线必经过切点.,(3)经过切点垂直于切线的直线必经过圆心.,O,A,l,OA,l,直线,l是,O的切线,切点为A,23,切线长定理:,从圆外一点引圆的两条切线,它们的切线长相等;这点与圆心的连线平分这两条切线的夹角。,B,A,P,O,PA、PB为O的切线,PA=PB,APO=BPO,24,1.在RtABC中,B=90,A的平分线交BC于D,以D为圆心,DB长为半径作D.,试说明:AC是D的切线.,F,过D点作DF AC于F点,然后证明DF等于圆D的半径BD,25,如图,,AB,在,O,的直径,点,D,在,AB,的延长线上,且,BD,=,OB,点,C,在,O,上,CAB,=30.,(1),CD,是,O,的切线吗?说明你的理由;,(2),AC,=_,请给出合理的解释.,只要连接OC,而后证明OC垂直CD,26,2.AB是O的弦,C是O外一点,BC是O的切线,AB交过C点的直径于点D,OACD,试判断BCD的形状,并,说明你的理由.,27,不在同一直线上的三点确定一个圆.,O,C,B,A,三角形的外接圆与内切圆:,三角形的外心就是三角形各边垂直平分线的交点.,O,A,B,C,三角形的内心就是三角形各角平分线的交点.,28,等边三角形的外心与内心重合.,特别的:,内切圆半径与外接圆半径的比是1:2.,O,A,B,C,D,29,二、过三点的圆及外接圆,1.过一点的圆有_个,2.过两点的圆有_个,这些圆的圆心的都在_,上.,3.过三点的圆有_个,4.如何作过不在同一直线上的三点的圆(或三角形的外接圆、找外心、破镜重圆、到三个村庄距离相等),5.锐角三角形的外心在三角形_,直角三角形的外心在三角形,_ _,,钝角三角形的外心在三角形_。,无数,无数,0或1,内,外,连结着两点的线段的垂直平分线,在斜边的中点上,30,经过三角形的三个顶点的圆叫做三角形的,外接圆,,,外接圆的圆心叫做三角形的,外心,,,三角形叫做圆的,内接三角形,。,问题1,:如何作三角形的外接圆?如何找三角形的外心?,问题2,:三角形的外心一定 在三角形内吗?,C90,ABC是锐角三角形,ABC是钝角三角形,31,3.如图,是某机械厂的一种零件平面图.,(1)请你根据所学的知识找出该零件所在圆的圆心(要求正确画图,不写做法,保留痕迹).,(2)若弦AB=80cm,AB的中点C到AB的距离是20cm,求该零件所在的半径长.,32,基础题:,1.既有外接圆,又内切圆的平行四边形是_.,2.直角三角形的外接圆半径为5cm,内切圆半径为1cm,则此三角形的周长是_.,3.O边长为2cm的正方形ABCD的内切圆,E、F切O,于P点,交AB、BC于E、F,则BEF的周长是_.,E,F,H,G,正方形,22cm,2cm,33,4.如图,,O,为,ABC,的内切圆,切点分别为,D,E,F,P,是弧,FDE,上的一点,若,A+C=110,度,则,FPE=_度,C,o,D,E,A,B,.,F,P,5如图,已知,ABC的三边长分别为AB=4cm,BC=5cm,AC=6cm,,O是,ABC的内切圆,切点分别是E、F、G,则AE=,,BF=,,CG=,。,34,7如图,,M,与,x,轴相交于点,A,(2,0),,B,(8,0),与,y,轴相切于点,C,,求圆心,M,的坐标,A,O,y,.,M,C,x,B,35,6.小红家的锅盖坏了,为了配一个锅盖,需要测量锅盖的,直径(锅边所形成的圆的直径),而小红家只有一把长20cm,的直尺,根本不够长,怎么办呢?小红想了想,采取以下方,法:首先把锅平放到墙根,锅边刚好靠到两墙,用直尺紧贴,墙面量得MA的长,即可求出,锅盖,的直径,请你利用图乙,说,明她这样做的道理.,36,圆与圆的位置关系:,.,.,.,.,.,外离,外切,相交,内切,内含,37,O,1,O,2,O,1,O,2,O,1,O,2,O,2,O,1,O,1,O,2,两圆的位置关系,数量关系及识别方法,外离,外切,相交,内切,内含,dR+r,d=R+r,d=R-r,d,R-r,R-r,d,R+r,38,1.,如图,,,O1,和,O2内切于点T,,,O2的弦TA,TB分别交O1于C,D,连接AB,CD,求证:AB/CD,o1,o2,A,B,C,D,T,39,典型例题:,1.如图,O的直径AB=12,以OA为直径的O,1,交大圆的弦AC于D,过D点作小圆的切线交OC于点E,交AB于F.,E,O,1,O,D,C,B,A,F,(2)猜想DF与OC的位置关系,并说明理由.,(1)说明D是AC的中点.,(3)若DF=4,求OF的长.,40,2.如图,正方形ABCD的边长为2,P是线段BC上的一个动点.以AB为直径作圆O,过点P作圆O的切线交AD于点F,切点为E.,D,C,B,A,F,P,O,E,(1)求四边形CDFP的周长.,(2)设BP=x,AF=y,求y关于x的函数解析式.,Q,41,三.正多边形:,2.半径:正多边形外接圆的半径叫做这个正多边形的半径,.中心:一个正多边形外接圆的圆心叫做这个正多边形的中心,3.中心角:正多边形每一边所对的外接圆的圆心角叫做这个正多边形的中心角,4.边心距:中心到正多边形一边的距离叫做这个正多边形的边心距,O,A,B,F,D,C,E,G,42,3,正多边形和圆,(1).有关概念,(2).常用的方法,(3).正多边形的作图,E,F,C,D,.,边心距r,半径R,中心角,O,边,O,A,B,C,R,d,a,43,1.圆的周长和面积公式,2.弧长的计算公式,3.扇形的面积公式,S,=,360,n,r,2,L,=,180,n,r,=,1,2,l,r,S,或,四.圆中的有关计算:,周长,C=2,r,面积,s=,r,2,O,r,44,4.圆柱的展开图:,D,B,C,A,r,h,S,侧,=2,r h,S,全,=2,r h+2,r,2,45,5.圆锥的展开图:,底面,侧面,a,a,h,r,S,侧,=,r a,S,全,=,r a+,r,2,46,1、,扇形AOB的半径为12cm,AOB=120,求扇形的面积和周长.,2、,如图,当半径为30cm的转动轮转过120时,传送带上的物体A平移的距离为_.,A,47,A,C,B,A,C,3:,如图,把RtABC的斜边放在直线 上,按顺时针方向转动一次,使它转到 的位置。若BC=1,A=30,0,。求点A运动到A,位置时,点A经过的路线长。,48,4.如下图,所示的三角形铁皮余料,剪下扇形制成圆锥形玩具,已知,C=90度,AC=BC=4cm,使剪下的扇形边缘半径在三角形边上,弧与其他边相切,设计裁剪的方案图,直接写出扇形的半径长。,O,49,5,、扇形的面积是它所在圆的面积的 ,这个扇,形的圆心角的度数是,_.,240,6、圆锥的母线为5cm,底面半径为3cm,则圆锥的表面积为_,24cm,2,50,7、已知:在Rt,ABC,求以AB为轴旋转一周所得到的几何体的全面积。,分析:,以AB为轴旋转一周所得到的几何体是由公共底面的两个圆锥所组成的几何体,因此求全面积就是求两个圆锥的侧面积。,51,A,B,C,8:,如图,在RtABC中,ACB=90,0,。,(1)分别以AC,BC为轴旋转一周所得的圆锥相同吗?,(2)以AB为轴旋转一周得到怎样的几何体?,(3)若AB=5,BC=4,你能求出题(2)中几何体的表面积吗?,52,9.如图,圆锥的底面半径为2cm,母线长为8cm,一只蚂蚁从底面圆周上一点A出发,沿圆锥侧面爬行一周回到A点,求蚂蚁爬行的最短路线长是多少?,B,A,O,A,53,E,C,B,A,O,D,常见的基本图形及结论:,1.如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D,则:,AC=BD,若大圆的弦切小圆于C,则,O,A,C,B,AC=BC,两圆之间的环形面积,S,=,AB,2,54,2.如图,以等腰ABC的腰AB为直径作O交底边BC于点D,则:,O,C,B,A,D,点D是BC的中点.,55,O,P,B,A,D,C,3.如图,已知PA、PB切圆O于点A,B,过弧AB上任一点E作圆O的切线,交PA,PB于点C,D,则:,(1)PCD的周长=2PA,(2)COD=90,0,-APB,E,56,O,A,B,C,O,A,B,C,D,F,E,D,F,E,4.如图,ABC各边分别切圆O于点D,、,E、F.,(1)DEF=90,0,-A,(3)S,ABC,=(a+b+c)r,(2)BOC=90,0,+A,57,A,B,C,O,E,F,D,5.在Rt ABC中,ACB是直角,三边分别是a、b、c,内切圆半径是r,则:,内切圆半径r=,a+b-c,2,58,6.如图,AB是圆O的直径,AD,BC,DC均为切线,则:,(1)DC=AD+BC,(2)DOC=90,0,O,B,D,C,A,E,59,3,已知:AB为O的直径,P为AB弧的中点,(1)若O与O外切于点P(见图甲),AP、BP的延长线分别交O于点C、D,连接CD,则PCD是,三角形;(2)若O与O相交于点P、Q(见图乙),连接AQ、BQ并延长分别交O于点E、F,请选择下列两个问题中的一个作答:,问题二:判断线段AE与BF的关系,并证明你的结论.,问题一:判断PEF的形状,并证明你的结论;,60,5.已知O,1,、O,2,,相交与A,B两点,两圆的半径分别是 和 ,公共弦的长AB=6,求O,1,O,2,和,O,1,A,O,2,B,A,.,.,O,1,O,2,D,A,B,.,.,O,1,O,2,D,=3,+或3-,O,1,O,2,O,1,A,O,2,=75度或15度,61,6.某电机长生产一批直径分别为10cm和20cm的圆形硅钢片,现在有宽度为20cm的硅钢片,现设计了两种裁料方法:,1.如图(一),把两种规格的圆钢片分开排料:,2.如图(二)把2片小的和1片大的圆钢片间隔起来排料:,问题1.上述问题主要反映了有关圆的位置关系是_,问题2.比较两种不同的方案,通过计算说明哪一种排料方法更节约用料?,62,专题一:与圆有关的辅助线的作法:,辅助线,莫乱添,规律方法记心间;圆半径,不起眼,角的计算常要连,构成等腰解疑难;,切点和圆心,连结要领先;遇到直径想直角,灵活应用才方便。,弦与弦心距,亲密紧相连;,63,2、已知O,1,与O,2,相交于C、D,,O,1,O,2,的延长线和O,1,交于A,,AC、AD分别与O,2,相交于点E、F。,求证:CE=DF,C,D,o,1,o,2,A,F,E,G,H,64,4、如图,O,1,、O,2,外切于P,AB与O,1,、O,2,切于A、B,CP为O,2,的内公切线并交AB于C,求证:O,1,CO,2,C。,B,1,2,A,C,O,O,P,65,第1部分 圆的基本性质,第2部分 与圆有关的位置关系,本章安排复习内容,第3部分 正多边形和圆,第4部分 弧长和面积的计算,第5部分 有关作图,66,对于一个圆中的弦长a、圆心到弦的距离d、圆半径r、弓形高h,这四个量中,只要已知其中任意两个量,就可以求出另外两个量,如图有:,d+h=r,经验点拔,垂径定理的应用,67,A,B,.,.,C,O1,O2,要记住这个模型,他的结论有很多的应用,ABC叫做切点三角形,68,熟练掌握以下的结论,r,r,记住:,在具体计算时往往用到的是面积法和方程思想,69,三.正多边形:,2.半径:正多边形外接圆的半径叫做这个正多边形的半径,.中心:一个正多边形外接圆的圆心叫做这个正多边形的中心,3.中心角:正多边形每一边所对的外接圆的圆心角叫做这个正多边形的中心角,4.边心距:中心到正多边形一边的距离叫做这个正多边形的边心距,O,A,B,F,D,C,E,G,村里有一座荒废的大宅子,已经非常破旧了,据老人说,这座宅子已经有几百年的历史,是当初村里的富户留下来的。可是,这么好的大宅子,怎么会荒废了呢?原来,很久以前人们就传说这宅子里有鬼,不知道因为什么,这鬼死守在这宅子里,无论如何也不肯离开。凡是想进入这宅子的人,都被鬼吓得不轻。在村子里有一个传说,因为这宅子以前的主人是有钱人,所以说,在这宅子里有难以计数的金银珠宝,而那女鬼就是主人找来守护这些金银珠宝的。可是,既然有这么多宝贝在,又为什么要放弃呢?主人去哪里了呢?贪婪,是人不可避免的一大弊病。村里有个小混混,叫二狗子,整天游手好闲,什么也不干,就知道偷偷摸摸,调戏小姑娘。还整天异想天开,觉得总有伯乐能相中自己,让自己飞黄腾达。不过,就他那猥琐的样子,谁看见谁讨厌,根本没人对他有好感。这样的人,肯定人人都防着,所以二狗子现在的日子是越来越难过了。所以,他打起了老宅子里宝藏的主意。二狗子可是个不信邪的主,对于老宅子里闹鬼的传闻,根本不屑一顾。再说了,干嘛要晚上去,大白天进去,就算有鬼又能拿自己怎么样!打定主意,二狗子准备好,爬进了老宅的院子。虽然已经是荒废的宅子,但是还能看出来,这宅子以前一定很风光。不说别的,就说这建筑材料,一百多年风吹日晒,竟然一点儿腐蚀都没有!庭院宽广,建筑宏伟,屋子里的家具虽然蒙满灰尘,但是能看出来那都是上好木料,价值不菲。这里就是堂屋了,真大真漂亮啊,这要是收拾干净,绝对是别墅级别的。忽然,二狗子的目光落在堂屋一侧挂着的两副画上。这个屋子都蒙满灰尘,脏兮兮的,可唯独这两幅画干干净净,而且像是经过精细保护一样。这是怎么回事,难道有人来着打扫,可是怎么会只打扫两幅画啊!左边的画上画着的是一个俊美书生,手执折扇,白衣胜雪,长发垂腰;右边的画上则是一个绝世美人,肤若凝脂,明眸若星,发髻上插着一朵牡丹,身着白色素裙,挽着紫色飘带,右手捻着一朵花,正放在鼻前轻嗅。二狗子不禁有些痴,活了这么大,还真没见过这么漂亮的女人,难道这是以前寨子的主人吗?忽然,二狗子脑子里一阵灵光,这两幅画挂在这里也不知道多少年了,说不定是古董,拿出去找人鉴定一下,没准能卖个好价钱呢!正当二狗子准备去摘画的时候,忽然不止从哪里窜出一个黑影子,在他面前一晃而过。二狗子转头看去,却什么都没发现。幻觉吧,二狗子晃晃脑袋,又准备伸手去拿画。可是这个时候,二狗子忽然发现一件怪事。刚才那画中女子明明是左手拈花,可是现在却是右手了!这是怎么回事,难道自己刚才就看错了。二狗子揉揉眼睛,没错,是右手拈花,一定是自己刚才看错了。就在二狗子的手快要碰到那女人的画像的时候,突然感到有一只手搭在她的肩膀上,一股寒气瞬间飘了过来。二狗子的汗毛瞬间竖了起来。他回头一看,身后竟然就站着画中的那个女人,相貌身材衣着全都一模一样,正毫无表情的看着他。“啊!”二狗子后退一步,会有看看画,又看看那女人,没错,一模一样:“你,你是谁?”那女人莞尔一笑,漂亮的脸上突然出现几道裂痕,一股腐败的味道从那些裂缝中散发出来。二狗子虽然胆子大,但也从未见过这样的情景,正在惊讶的时候,那女人的皮肤开始迅速腐烂,一块块烂肉从腐烂的皮肤中掉出来,整个堂屋臭气熏天。很快,一个貌美如花的女人就变成了一具白骨。二狗子哪见过这样的情景,一声不吭就晕了过去。第二天有人路过那大宅子的时候,看到二狗子坐在大宅子门口,口吐白沫,神志不清。不管问他什么,都只会说一句:“有鬼!有鬼!”二狗子就这样疯了。村里人都知道二狗子的品行,这家伙肯定是想去偷大宅子里的宝贝,才被鬼吓成这样的。从此以后,那大宅子就更成了村里人谈之色变的地方。一个月后,村里来了一个年轻人,背着大背包。这是个喜欢探险的年轻人,正是因为听说了这村子里闹鬼的大宅子,所以才专程来到这里,想看一看究竟是怎么回事。村里人都劝年轻人千万别进去,很可怕的。但是年轻人不屑一顾,他表示不光要进去探险,还要在里面搭帐篷过夜。不顾村里人的劝阻,年轻人进入了大宅子。他首先里里外外看了一遍,只不过,他最后的注意力没集中在堂屋的那两张画像上,而是集中在后院一间类似主卧的房间门口。这间屋子从外面看就知道很干净,不管是大门、廊柱、台阶都一尘不染。一眼就能看出来,这里经常有人有人来打扫。不过,年轻人却不敢进去,因为在那门前放着一张椅子,椅子上端端正正地坐着一具完整的白骨!像一个忠诚的卫士一样守护者身后的房门。从那残存的发髻和身上已经破烂不堪的衣服能看出来,这是个女人,而且就是堂屋里那画中的女人!难道说,这宅子里真的有宝藏,这女人难道就是主人安排在这里守护宝藏的吗!害怕之余,年轻人感到心中一阵窃喜,可能这个流传了几百年的神秘传说就要在自己面前露出真面目了!就在年轻人低头收拾自己的东西的时候,忽然听到“咔吧”一声。如果没有判断错误的话,那应该是骨头发出的声音。年轻人的心马上一沉!骨头,现在在自己旁边就有一大堆啊,难道说抬头一看,那堆骨头并没有任何反应,还是那样如磐石一般地坐着。“可能是我幻听吧。”年轻人拍拍胸口,准备继续收拾东西。“咔吧”又是一声。“咔吧咔吧咔吧”连着几声传来。年轻人站起身来看向那尸体。这一次不对劲了,因为那骷髅原本仰着的头现在竟然正对着自己,两只空洞洞的眼睛如同黑洞一样,要把他吸进去。年轻人往后退了一步,谁知那骷髅竟然一下子站了起来,两只手骨抬了起来,不断发出“咔吧咔吧”的声音。这个年轻人的心理素质显然比二狗子好得多,转身就往外跑。那骷髅也毫不犹豫地追了上来,而且跑得奇快,尖利的指骨就在年轻人的脑后晃来晃去。年轻人跑进堂屋,急忙把门狠狠关上,只听门外“砰砰”直响,应该是那骷髅在砸门吧。年轻人刚想往外跑,忽然看见墙上那女子的画像似乎有什么不对劲的地方。原本两个画中人的眼睛是对视着的,但是现在那女人的一双眼睛分明就在盯着他!“啊”恐怖的女声从画像中传来,只见那画中倾国倾城的美人儿瞬间变成一具白森森的骷髅,挥舞着两只手,似乎要从那画中出来,直取年轻人的性命。年轻人吓得尖叫着就跑了出去,宅子的大门竟然被他生生撞出一个大洞。因为当时是白天,所以外面刚好人经过,看到年轻人惊慌失措,脸色苍白的样子,也吓了一跳。看到有人经过,年轻人才稍稍安心,拉着那人大声说:“里面有鬼,有鬼啊!”就在这时,只听“嗖”的一声,年轻人的大背包飞了出来,不偏不倚正落在年轻人脚边。年轻人和那个村民对视了一眼,随即大叫着,撒开腿跑得没了影。尹飞是个刚毕业的大学生,由于家资丰厚,所以并没有着急找工作,而是准备到处游玩儿一番。由于他是个喜欢复古风格的人,所以经常会去一些未开发的小镇和村庄,因为那里依然保留着以前的风格。当尹飞来到这个村子的时候,马上就惊呆了,他走了那么多地方,还真没见过这么漂亮的地方,简直跟陶渊明陛下的世外桃源有一拼。尤其是那座大宅子,虽然陈旧,但是古朴典雅,让尹飞爱不释手,甚至还感到莫名其妙地亲切。尹飞爱上了这里的青山秀水,风景如画,于是毫不犹豫地找到村长,要求买下那所大宅子。“小伙子,那宅子闹鬼,厉害着呢,要不然早拆了!”“大爷您别开玩笑了,这世界上哪来的鬼啊。”“这可是真的,村里很多人都看见过,那二狗子就是因为到里面去偷东西,才变成今天这样的!”尹飞笑着说:“大爷,我不怕,就算真的有鬼,我跟他无冤无仇,他又能把我怎么样呢。”村长看尹飞这么执着,于是说:“小伙子,要不你先去那宅子里待上一天,看看情况再说。”“也行。”尹飞高兴的说。于是尹飞提着行李来到那大宅子前,只见几个村民在旁边探头探脑地向这边看过来。可是当尹飞想跟他们说话的时候,他们却跑了。只留下一个流着哈喇子的傻子蹲在地上惊恐地看着那大宅子,这家伙正是二狗子。尹飞走近几步看看二狗子,看他这样子,也问不出什么,还是算了。可是二狗子一看见尹飞,马上像触电一样蹦了起来,指着尹飞大叫道:“鬼啊,鬼啊!”“难道这家伙就是村长说的那个傻子,真可怜啊!”尹飞叹了口气,朝大宅子里走去。刚踏进大门,一股凉风忽然迎面而来,地上的陈体和落叶显示出一片荒凉的光景,让人忍不住有些不寒而栗的感觉。尹飞走进堂屋,把行李放下,目光自然也定格在屋中最鲜亮的地方,也就是那两幅画上。除了惊叹画中女子的美貌之外,更让尹飞觉得奇怪的是,另一幅画中的男子竟然跟自己长得一摸一样!如果她也是长发的话,那简直分毫不差!大概是碰巧了吧,尹飞也没放在心上。他放好东西,尹飞往后院走去。自然也注意到那卧房门口端坐着的骷髅骨。真难想象,这干瘪的骷髅竟然就是那画中倾国倾城的女子。尹飞朝着那骷髅骨深深鞠了三个躬说:“姑娘,打搅了,我真的很喜欢这大宅子,所以才想买下来。姑娘别着急,我明天就找一个好地方,把姑娘安葬了,免得你再受风吹日晒的痛苦。”说罢,尹飞把女子的事故抱起来,放在旁边的意见侧室里,并摆上一张干净的被单。随后,尹飞准备到那间卧房里去看看,可是那门好像从里面锁着,怎么推都推不开。“算了,等买下来修整的时候再说吧。”入夜后,尹飞在堂屋里搭好帐篷,由于白天很疲惫,所以很快就睡着了。迷迷糊糊中,尹飞听到房后传来“咔吧咔吧”的声音,很有节奏,像是有什么人在走动。于是急忙起身去看。刚打开通往后院的门,那声音突然消失了,后院里安安静静的,一点儿动静都没有。出来一看,尹飞惊呆了。因为那具骷髅竟然又坐在了卧室门前的椅子上,和白天一样,只是在夜幕降临的时候显得更加阴森恐怖。这是怎么回事,难道这房子尹飞觉得脊背发凉,寒毛都竖了起来。看来这真的是个是非之地,还是赶快离开吧。于是,尹飞收拾好东西,刚准备离开堂屋,忽然看到门外晃过一个人的影子。“谁啊?”尹飞问道。那人影又一次出现,正立在屋门中间。看样子长发飘飘,身材纤细,应该是个女人。难道说尹飞想起后院的那具骸骨。“吱呀”门被推开了。一阵白雾迅速在整个堂屋中弥漫开来。白雾中一个女人走了进来。“你是谁?”尹飞往后退了几步,白雾渐渐散去,那女人的样子清晰起来。尹飞看清楚了,就是那画中的女人!“啊,鬼啊!”尹飞吓得叫了起来。女人看了看尹飞,目光渐渐聚焦在尹飞右手的小臂上,那里有一个圆形的,有些像牙印的痕迹。两行泪水顺着女人秀美的脸颊落了下来。女人伤感地转过身,瞬间就消失了。第二天晚上,尹飞住在一个村民家里。晚上迷迷糊糊地做了一个奇怪的梦。几百年前,村里首富尹家的公子尹飞从镇子上娶了一位富家小姐,叫郭素素,男俊女俏,情投意合,两个人生活非常幸福,是让全村人羡慕的一对神仙眷侣。然而,男儿志在四方,尹飞必须要出门求功名。两人新婚不到一年,自然难舍难分。“素素,你放心,等我求得功名,你就是诰命夫人。”郭素素哭着说:“你有才有貌,万一高中之后被哪位公主或是官家小姐看中,我可怎么办呢?”尹飞当即对天起誓,今生若负郭素素,必遭天谴,永世不得超生。如果自己死在外面,就算变成魂魄,也要回家跟爱妻团聚。郭素素含着泪,在丈夫的右手小臂上狠狠咬了一口说:“这是我给你烙下的印,如果你不信守承诺,不管你去哪里,这印记都会跟着你。”谁知道,第一次出远门的尹飞因为水土不服,在路上就感染了疾病,因为治疗不当,很快就一命呜呼。随从们把尹飞的尸体带了回来,父母看到儿子的尸体,当场就晕了过去,没过多久就都病死了。家中只剩下郭素素一个人。郭素素遣散了家中的奴仆,从此闭门不出。她没有安葬尹飞的尸体,而是将其泡在卧房中的药草缸中,以免腐烂。因为她坚信,尹飞一定会遵守诺言,魂魄会回来与自己相见。没过多久,郭素素因为极度伤心再加上营养不良,身体渐渐虚弱。于是,她搬了一把椅子,就放在我房门口,这样技能守护丈夫的尸体,又能放眼门前看丈夫的灵魂是否归来。没多久,郭素素就死在了椅子上,魂魄化为守财鬼,几百年来,虔诚地守护着卧房中对于她而言最重要、最爱的人。醒来后,尹飞流着泪又进入大宅子,不知道为什么,仅仅一天时间,这里就显得越发萧条。堂屋中画像中郭素素手中的花已经败朽,一张俏脸也变得阴沉。而那原本端坐在椅子上的尸骨,已经完全散架,残破不堪。“对不起,是我没遵守诺言。前世欠你的,我今生补偿。”尹飞一边哭,一边将郭素素的尸骨洗净理好,又将两张画像收拾好,离开了村子。,70,
展开阅读全文