收藏 分销(赏)

高考数学一轮复习29函数模型及其应用课时作业理.doc

上传人:胜**** 文档编号:1052278 上传时间:2024-04-11 格式:DOC 页数:6 大小:126KB
下载 相关 举报
高考数学一轮复习29函数模型及其应用课时作业理.doc_第1页
第1页 / 共6页
高考数学一轮复习29函数模型及其应用课时作业理.doc_第2页
第2页 / 共6页
高考数学一轮复习29函数模型及其应用课时作业理.doc_第3页
第3页 / 共6页
高考数学一轮复习29函数模型及其应用课时作业理.doc_第4页
第4页 / 共6页
高考数学一轮复习29函数模型及其应用课时作业理.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、基础巩固题组(建议用时:40分钟)一、选择题1下表是函数值y随自变量x变化的一组数据,它最可能的函数模型是()x45678910y15171921232527A一次函数模型 B幂函数模型C指数函数模型 D对数函数模型解析根据已知数据可知,自变量每增加1函数值增加2,因此函数值的增量是均匀的,故为一次函数模型答案A2(2015合肥调研)某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图象正确的是()解析前3年年产量的增长速度越来越快,说明呈高速增长,只有A,C图象符合要求,而后3年年产量保持不变,故选A

2、.答案A3(2014湖南卷)某市生产总值连续两年持续增加第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()A. BC. D1解析设两年前的年底该市的生产总值为a,则第二年年底的生产总值为a(1p)(1q)设这两年生产总值的年平均增长率为x,则a(1x)2a(1p)(1q),由于连续两年持续增加,所以x0,因此x1,故选D.答案D4(2014北京东城期末)某企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元为使该设备年平均费用最低,该企业需要更新设

3、备的年数为()A10 B11 C13 D21解析设该企业需要更新设备的年数为x,设备年平均费用为y,则x年后的设备维护费用为242xx(x1),所以x年的平均费用为yx1.5,由均值不等式得yx1.52 1.521.5,当且仅当x,即x10时取等号,所以选A.答案A5.某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差()A10元 B20元 C30元 D元解析设A种方式对应的函数解析式为sk1t20,B种方式对应的函数解析式为sk2t,当t100时,100

4、k120100k2,k2k1,t150时,150k2150k1201502010.答案A二、填空题6.(2014辽宁六校联考)A、B两只船分别从在东西方向上相距145 km的甲乙两地开出A从甲地自东向西行驶B从乙地自北向南行驶,A的速度是40 kmh,B的速度是 16 kmh,经过_小时,AB间的距离最短解析设经过x h,A,B相距为y km,则y(0x),求得函数的最小值时x的值为.答案7(2015长春模拟)一个容器装有细沙a cm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为 yaebt(cm3),经过 8 min后发现容器内还有一半的沙子,则再经过_min,

5、容器中的沙子只有开始时的八分之一解析当t0时,ya,当t8时,yae8ba,e8b,容器中的沙子只有开始时的八分之一时,即yaebta,ebt(e8b)3e24b,则t24,所以再经过16 min.答案168.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为_m.解析设内接矩形另一边长为y,则由相似三角形性质可得,解得y40x,所以面积Sx(40x)x240x(x20)2400(0x40),当x20时,Smax400.答案20三、解答题9.在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万

6、元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息)在甲提供的资料中:这种消费品的进价为每件14元;该店月销量Q(百件)与销售价格P(元)的关系如图所示;每月需各种开支2 000元(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?解设该店月利润余额为L元,则由题设得LQ(P14)1003 6002 000,由销量图易得Q代入式得L(1)当14P20时,Lmax450元,此时P19.5元;当20P26时,Lmax元,此时P元故当

7、P19.5元时,月利润余额最大,为450元(2)设可在n年后脱贫,依题意有12n45050 00058 0000,解得n20.即最早可望在20年后脱贫10(2014郑州模拟)已知某物体的温度(单位:摄氏度)随时间t(单位:分钟)的变化规律:m2t21t(t0,并且m0)(1)如果m2,求经过多少时间,物体的温度为5摄氏度;(2)若物体的温度总不低于2摄氏度,求m的取值范围解(1)若m2,则22t21t2,当5时,2t,令2tx1,则x,即2x25x20,解得x2或x(舍去),此时t1.所以经过1分钟,物体的温度为5摄氏度(2)物体的温度总不低于2摄氏度,即2恒成立亦m2t2恒成立,亦即m2恒成

8、立令x,则0x1,m2(xx2),由于xx2,m.因此,当物体的温度总不低于2摄氏度时,m的取值范围是.能力提升题组(建议用时:25分钟)11为了预防信息泄露,保证信息的安全传输,在传输过程中都需要对文件加密,有一种为加密密钥密码系统(Private Key Cryptosystem),其加密、解密原理为:发送方由明文密文(加密),接收方由密文明文(解密)现在加密密钥为ykx3,如“4”通过加密后得到密文“2”,若接受方接到密文“”,则解密后得到的明文是()A. B C2 D解析由题目可知加密密钥ykx3是一个幂函数型,由已知可得,当x4时,y2,即2k43,解得k.故yx3,显然令y,则x3

9、,即x3,解得x.答案A12.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x,y应为()Ax15,y12 Bx12,y15Cx14,y10 Dx10,y14解析由三角形相似得.得x(24y),Sxy(y12)2180,当y12时,S有最大值,此时x15.答案A13(2014岳阳模拟)一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x(xN)件当x 20时,年销售总收入为(33xx2)万元;当x20时,年销售总收入为260万元记该工厂生产

10、并销售这种产品所得的年利润为y万元,则y(万元)与x(件)的函数关系式为_,该工厂的年产量为_件时,所得年利润最大(年利润年销售总收入年总投资)解析当0x20时,y(33xx2)x100x232x100;当x20时,y260100x160x.故y(xN)当0x20时,yx232x100(x16)2156,x16时,ymax156.而当x20时,160x140,故x16时取得最大年利润答案y(xN)1614.某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线的一段,已知跳水板AB长为2 m,跳水板距水面CD的高BC为3 m,CE5 m,CF6 m,为安全和空中姿态优美,训练时跳水曲线应在离

11、起跳点h m(h1)时达到距水面最大高度4 m,规定:以CD为横轴,CB为纵轴建立直角坐标系(1)当h1时,求跳水曲线所在的抛物线方程;(2)若跳水运动员在区域EF内入水时才能达到压水花的训练要求,求达到压水花的训练要求时h的取值范围解(1)由题意知最高点为(2h,4),h1,设抛物线方程为yax(2h)24,当h1时,最高点为(3,4),方程为ya(x3)24,将A(2,3)代入,得3a(23)24,解得a1.当h1时,跳水曲线所在的抛物线方程为y(x3)24.(2)将点A(2,3)代入yax(2h)24得ah21,所以a.由题意,得方程ax(2h)240在区间5,6内有一解令f(x)ax(2h)24x(2h)24,则f(5)(3h)240,且f(6)(4h)240.解得1h.达到压水花的训练要求时h的取值范围为1,

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 考试专区 > 高考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服