资源描述
课时跟踪检测(十二) 函数模型及其应用
第Ⅰ组:全员必做题
1.设甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图像为( )
2.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x之间关系的是( )
A.y=100x B.y=50x2-50x+100
C.y=50×2x D.y=100log2x+100
3.一水池有两个进水口,一个出水口,每个水口的进、出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.
给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水,则一定正确的是( )
A.① B.①② C.①③ D.①②③
4.某种新药服用x小时后血液中的残留量为y毫克,如图所示为函数y=f(x)的图像,当血液中药物残留量不小于240毫克时,治疗有效.设某人上午8:00第一次服药,为保证疗效,则第二次服药最迟的时间应为( )
A.上午10:00 B.中午12:00
C.下午4:00 D.下午6:00
5.某大楼共有12层,有11人在第1层上了电梯,他们分别要去第2至第12层,每层1人.因特殊原因,电梯只允许停1次,只可使1人如愿到达,其余10人都要步行到达所去的楼层.假设乘客每向下步行1层的“不满意度”增量为1,每向上步行1层的“不满意度”增量为2,10人的“不满意度”之和记为S.则S最小时,电梯所停的楼层是( )
A.7层 B.8层 C.9层 D.10层
6.一高为H,满缸水量为V的鱼缸截面如图所示,其底部破了一个小洞 ,满缸水从洞中流出.若鱼缸水深为h时的水的体积为v,则函数v=f(h)的大致图像可能是图中的________.
7.如图,书的一页的面积为600 cm2,设计要求书面上方空出2 cm的边,下、左、右方都空出1 cm的边,为使中间文字部分的面积最大,这页书的长、宽应分别为________.
8.某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7 000万元,则x的最小值是________.
9.(2013·昆明质检)某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.
(1)写出每户每月用水量x(吨)与支付费用y(元)的函数关系;
(2)该地一家庭记录了去年12个月的月用水量(x∈N*)如下表:
月用水量x(吨)
3
4
5
6
7
频数
1
3
3
3
2
请你计算该家庭去年支付水费的月平均费用(精确到1元);
(3)今年干旱形势仍然严峻,该地政府号召市民节约用水,如果每个月水费不超过12元的家庭称为“节约用水家庭”,随机抽取了该地100户的月用水量作出如下统计表:
月用水量x(吨)
1
2
3
4
5
6
7
频数
10
20
16
16
15
13
10
据此估计该地“节约用水家庭”的比例.
第Ⅱ组:重点选做题
1.(2014·威海高三期末)对于函数f(x),如果存在锐角θ,使得f(x)的图像绕坐标原点逆时针旋转角θ,所得曲线仍是一函数,则称函数f(x)具备角θ的旋转性,下列函数具备角的旋转性的是( )
A.y= B.y=ln x C.y=x D.y=x2
2.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x(x∈N*)件.当x≤20时,年销售总收入为(33x-x2)万元;当x>20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y万元,则y(万元)与x(件)的函数关系式为________,该工厂的年产量为________件时,所得年利润最大.(年利润=年销售总收入-年总投资).
答 案
第Ⅰ组:全员必做题
1.选D 注意到y为“小王从出发到返回原地所经过的路程”而不是位移,用定性分析法不难得到答案为D.
2.选C 根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型.
3.选A 由甲、乙两图知,进水速度是出水速度的,所以0点到3点不出水,3点到4点也可能一个进水口进水,一个出水口出水,但总蓄水量降低,4点到6点也可能两个进水口进水,一个出水口出水,一定正确的是①.
4.选C 当x∈[0,4]时,设y=k1x,
把(4,320)代入,得k1=80,
∴y=80x.当x∈[4,20]时,设y=k2x+b.
把(4,320),(20,0)代入得
解得∴y=400-20x.
∴y=f(x)=
由y≥240,
得或
解得3≤x≤4或4<x≤8,∴3≤x≤8.
故第二次服药最迟应在当日下午4:00.故选C.
5.选C 设所停的楼层为n层,则2≤n≤12,由题意得:S=2+4+…+2(12-n)+1+2+3+…+(n-2)=+=n2-n+157,其对称轴为n=∈(8,9),又n∈N*且n离9的距离较近,故选C.
6.解析:当h=0时,v=0可排除①、③;由于鱼缸中间粗两头细,∴当h在附近时,体积变化较快;h小于时,增加越来越快;h大于时,增加越来越慢.
答案:②
7.解析:设长为a cm,宽为b cm,则ab=600 cm,则中间文字部分的面积S=(a-2-1)(b-2)=606-(2a+3b)≤606-2=486,当且仅当2a=3b,即a=30,b=20时,S最大=486 cm2.
答案:30 cm,20 cm
8.解析:七月份的销售额为500(1+x%),八月份的销售额为500(1+x%)2,则一月份到十月份的销售总额是3 860+500+2 [500(1+x%)+500(1+x%)2],根据题意有
3 860+500+2[500(1+x%)+500(1+x%)2]≥7 000,即25(1+x%)+25(1+x%)2≥66,
令t=1+x%,则25t2+25t-66≥0,
解得t≥或者t≤-(舍去),故1+x%≥,解得x≥20.
答案:20
9.解:(1)y关于x的函数关系式为
y=
(2)由(1)知:当x=3时,y=6;
当x=4时,y=8;当x=5时,y=12;
当x=6时,y=16;当x=7时,y=22.
所以该家庭去年支付水费的月平均费用为
(6×1+8×3+12×3+16×3+22×2)≈13(元).
(3)由(1)和题意知:当y≤12时,x≤5,
所以“节约用水家庭”的频率为=77%,据此估计该地“节约用水家庭”的比例为77%.
第Ⅱ组:重点选做题
1.选C 函数f(x)的图像绕坐标原点逆时针旋转角,相当于x轴、y轴绕坐标原点顺时针旋转角,问题转化为直线y=x+k与函数f(x)的图像不能有两个交点,结合图像可知y=x与直线y=x+k没有两个交点,故选C.
2.解析:当x≤20时,y=(33x-x2)-x-100=-x2+32x-100;当x>20时,y=260-100-x=160-x.
故y=(x∈N*).
当0<x≤20时,y=-x2+32x-100=-(x-16)2+156,x=16时,ymax=156.而当x>20时,160-x<140,故x=16时取得最大年利润.
答案:y=(x∈N*) 16
展开阅读全文