收藏 分销(赏)

高三数学二轮02(三角函数的图象).doc

上传人:精*** 文档编号:10351467 上传时间:2025-05-23 格式:DOC 页数:4 大小:779.53KB
下载 相关 举报
高三数学二轮02(三角函数的图象).doc_第1页
第1页 / 共4页
高三数学二轮02(三角函数的图象).doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述
宿豫中学美术班二轮复习三角专题 美术班二轮三角专题2 三角函数的图象 [复习重点] 五点法 图象变换 对称性 [双基回顾] 1.正弦函数与余弦函数图象的关系是_______________________________ 2.函数y=Asinx+B图象的对称中心坐标是___________________________ 3.用五点法作y=Asin(ωx+φ)列表中需取ωx+φ的五个值是_______________________ 4.正切函数图象的特征是____________________________________________________. [基础练习] 1. 函数的图象的对称轴方程是_____________ 2.函数的图象与直线有且仅有两个不同的交点,则的取值范围是__________. x y 0 2 -2 6 3.要得到函数的图象,只需将函数的图象上所有的点经过______________________________________________________________而得到. 4.函数的部分图象如图所示,则 = ; 5.下面有五个命题: ①函数y=sin4x-cos4x的最小正周期是. ②终边在y轴上的角的集合是{a|a=|. ③在同一坐标系中,函数y=sinx的图象和函数y=x的图象有三个公共点. ④把函数 ⑤函数其中真命题的序号是 ((写出所有真命题的编号)) [例题]1.如图,函数的图象与轴相交于点,且该函数的最小正周期为. (1)求和的值; (2)已知点,点是该函数图象上一点,点是的中点,当,时,求的值. 2.设函数图像的一条对称轴是直线. (1)求; (2)画出函数在区间上的图像. (3)若函数R)在上的最大值和最小值之和为1,求的值; 3.已知电流I与时间t的关系式为. (1)右图是(ω>0,) 在一个周期内的图象,根据图中数据求 的解析式; (2)如果t在任意一段秒的时间内,电流都能取得最大值和最小值,那么ω的最小正整数值是多少? [课后练习] 1. 若函数 的取值是_________ 2. 要得到函数的图象,只需将 3题图 223 -4 -3 -2 -1 0 1 2 3 4 函数的图象___________________ 3.函数的定义域,图象如右图, x 则不等式的解集为 ; 4. 已知函数y=tan(2x+)的图象过点(,0),则可以是__________ 5.已知简谐运动的图象经过点(0,1),则该简谐运动的最小正周期和初相分别为__________________ 6.设y=f(t)是某港口水的深度y(米)关于时间t(时)的函数,其中0≤t≤24.下表是该港口某一天从0时至24时记录的时间t与水深y的关系: t 0 3 6 9 12 15 18 21 24 y 12 15.1 12.1 9.1 11.9 14.9 11.9 8.9 12.1 经长期观察,函数y=f(t)的图象可以近似地看成函数y=k+Asin(ωx+φ)的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是__________________________ 7.已知函数,则函数图象的对称轴方程是_______________________. 8设函数的图象位于轴右侧所有的对称中心从左依次为,则的坐标是 9.作函数在区间的简图 10.已知函数R)的图像过点,且b>0,又的最大值为. (1)求函数 的解析式;(2)由函数y=图像经过平移是否能得到一个奇函数y=的图像?若能,请写出平移的过程;若不能,请说明理由. y O 1 11.已知函数的部分图象如图所示. (1)求函数的解析式; (2)若函数的图象按向量 m平移后得到函数 的图象,求向量m. 图13—1 12.已知函数 的图象在y轴上的截距为1,它在y轴右侧的第一个最大值点和最小值点分别为,. (1)求函数的解析式; (2)求函数的单调递增区间. 参考答案 [基础练习] 1. 2.(1,3) 3.向左平移 4.2+2 5.① ④解析:①,正确;②错误;③,和在第一象限无交点,错误;④正确;⑤错误.故选①④. [例题] 1. 解:(1)将,代入函数中得, 因为,所以. 由已知,且,得. (2)因为点,是的中点,. 所以点的坐标为. 又因为点在的图象上,且,所以, ,从而得或, 即或. 2(1). ; (2)图略; (3) 3. 解: (1)由图可知 A=300. 设t1=-,t2=, 则周期T=2(t2-t1)=2(+)=. ∴ ω==150π. 又当t=时,I=0,即sin(150π·+)=0, 而, ∴ =. 故所求的解析式为. (2)依题意,周期T≤,即≤,(ω>0) ∴ ω≥300π>942,又ω∈N*, 故最小正整数ω=943. [课后练习] 1. 2.向右平移个单位 3. 4.- 5. 6..y=12+3sint,t∈[0,24] [解析]: 由表中数据可得ymax=15.1,ymin=8.9,故k==12. T=3-0,∴T=12 又T=,∴ω=, 7. 8 (101,0) 9. 10. (1)代入A、B两点,解出 (2)向上平移一个单位后,向右平移,得到,即得到奇函数; 11.由图象知, (2)m=; 11(1),(2)增区间为[];
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服