资源描述
第一单元 分数乘法
第一课时 分数乘整数
教学内容:教材第2页例1练习一1~3。
教学目标:
1、结合具体情境,借助示意图理解分数乘整数的意义,渗透数形结合思想。
2、借助转化的方法理解分数乘整数的算理,并能正确地进行计算,提高计算能力。
3、在探索与交流活动中培养观察、推理的能力。
教学重点:理解他数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:理解分数乘整数的计算方法。
教学过程
一、 复习旧知,引出课题。
1、 出示复习题。
(1) 列式并根据题意说出算式中的两个乘数各表示什么。
5个12是多少? 9个11是多少? 8个6是多少?
提问:通过解决这三道整数乘法计算题,你有什么想说的吗?
(整数乘法是表示几个相同加数的和的简便运算)
(2)计算: ++= ++=
计算时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。
2.引出课题。
这题我们还可以怎么计算?今天我们就来学习分数乘法。
二、创设情境,探究分数乘整数
1.教学分数乘整数的意义。
出示例1,指名读题。小新、爸爸、妈妈一起吃一个蛋糕,每人吃个,3人一共吃多少个?
(1)分析演示:
l 题中的:“小新、爸爸、妈妈一起吃一个蛋糕,每人吃个”意思什么?(每人吃了整个蛋糕的)
l 确定标准量(单位“1”)和比较量。每人吃了整个蛋糕的,是把整个蛋糕看作标准量(单位“1”);把每人吃的份数看作比较量。
l 借助示意图理解题意
根据题意列出加法算式 ++
(1) 观察引导:这道题3个加数有什么特点?使学生看到3个加数的分数相同。
教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书:。再启发学生说出表示求3个相加的和。
(4)比较和12×5两种算式异同:
提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。
通过讨论使学生得出:相同点:两个算式表示的意义相同。
不同点:是分数乘整数,12×5是整数乘整数。
(5)概括总结:
教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)
2.教学分数乘以整数的计算法则。
(1)推导算理:由分数乘整数的意义导入。
问:表示什么意义?引导学生说出表示求3个的和。板书:++。学生计算,教师板书:。提示:分子中3个2连加简便写法怎么写?学生答后板书:(块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)
(2)引导观察:的分子部分、分母与算式两个数有什么关系?(互相讨论)
观察结果:的分子部分2×3就是算式中的分子2与整数3相乘,分母没有变。
(3)概括总结:请根据观察结果总结的计算方法。(互相讨论)
汇报结果:(多找几名学生汇报)使学生得出是用分数的分子2与整数3下乘的积作分子,分母不变。
根据的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将按简便方法计算。
3.反馈练习:看图写算式:做一做、练习一第1题。
三、全课小结。
第二课时 一个数乘分数的意义
教学内容:教材第3页例2,做一做。
教学目标:
1、通过直观操作理解一个数乘分数的意义
2、通过迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
3、通过分数乘分数的应用的广泛事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
教学重点:理解一个数乘分数的意义。
教学难点:理解一个数乘分数的意义。
教具运用:课件
教学过程:
一、复习导入
1、计算:×42 32× ×9×7
2、一个正方形的边长是m,它的周长是多少米?
二、创设情境,探究整数乘分数
1、借助情境理解整数乘分数的意义。
1桶水有12L。3桶共多少L?桶是多少L?桶是多少L?
(1)理解题意,明确题中的数量关系:单位量×数量=总量
(2)根据题意列出算式: 3桶水共多少L?12×3
桶是多少L?12× 桶是多少L?12×
(3)探究每道算式的意义
12×3表示求3个12L,也就是求12L的3倍是多少。
是一半,12×表示12L的一半,也就是求12L的是多少。
12×表示求12L的是多少。
发现:一个数乘分数表示的是求这个数的几分之几是多少。
(4)解决问题。12×3=36(L)
6
12×==6(L)
1
3
12×==3(L) 答:3桶共36L。桶是6L。桶是3L。
1
2、完成做一做
一袋面粉重3㎏.已经吃了它的,吃了多少千克?
学生独立解答后汇报。
3、 在学校举行的泥塑大塞中,一班共制作泥塑作品15件,其中男生做了总数的。一班男生做了多少件?
(分析:男生做了总数的,是把“一班共制作泥塑作品15件”看作单位“1”,把总数15件平均分成5份。男生做的占其中的3份。)
4、 归纳总结:
求一个数的几分之几是多少,用乘法计算。
5、练习:×6= 12×= ×4=
观察巡视学生是否先约分再计算。在约分时,是否有学生将分子与分子约分,为什么只能将整数与分数的分母约分。
6、说一说下题错误的原因是( )
×3 A、整数与分子约分了
5 1 B、整数与分子相乘了
=×3 C、整数与分母相乘了
=
四、巩固练习,反馈提高
1、练习一第2、3题。
五、全课小结
第三课时 分数乘分数(一)
教学内容:教材第3~4页例3,做一做1~3,练习一4~7。
教学目标:
1、理解分数乘分数的意义,掌握分数乘分数的计算法则,学会分数乘分数的简便计算。
2、通过迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
3、通过分数乘分数的应用的广泛事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
教学重点:理解一个数乘分数的意义,掌握其计算法则。
教学难点:理解一个数乘分数的意义。
教具运用:每个学生准备一张长15厘米,宽10厘米的长方形纸。
教学过程:
一、复习导入
(1)先说说下面算式的意义,再计算
×5= ×5= 2×= 25×=
(2)同学们每小时清理草坪20平方米,照这样计算,小时清理草坪多少平方米?
二、引入新课。
1、创设情境:李伯伯家有一块公顷的地。种土豆的面积占这块地的,种玉米的面积占。根据题目所给信息,你能提出什么问题?
预设:种土豆的面积是多少公顷? 种玉米的面积是多少公顷?
(1)理解题意:这块地共有公顷,种土豆的面积占这块地的,应把这块地的面积看作单位“1”。求种土豆的面积就是求公顷的是多少?乘法计算,列式×
2、揭示课题:请你观察×这个算式,它有什么特点?
板书课题:分数乘分数
三、操作探究算理。
1、提问:×究竟等于多少呢?
2、提出操作要求:这张纸代表面积是1公顷菜地。请你们小组合作用量一量、分一分、涂一涂的方法,说明×=。
3、学生动手操作,教师巡视。
4、小组汇报研究成果。
先把整张纸对折,纸就被平均分成两份,每一份是这张纸的,再把这部分平均分成5份,涂出其中的1份,这1份就占整张纸的。说明×=。
5、结合课件演示进行归纳。
用课件演示涂色过程:我们先把这张纸平均分成2份,1份是这张纸的,又把这平均分成5份,也就是把这张纸平均分成了2×5=10份,1份是这张纸的。由此可以得到:
×==(板书算式)
四、 迁移延伸,归纳法则。
1、理解题意:与解决问题(1)的方法相同,种玉米的面积占这块地(公顷)的,也是把这块地的面积看作单位“1”。求种玉米的面积就是求公顷的是多少,用乘法计算,列式为 ×。
2、小组讨论并操作:怎样列式?涂色表示的。怎样计算?
3、交流计算方法和思路。
预设:与刚才一样,也是把这张纸分成2×5=10份,不同的是取其中的3份,可以得到:
(板书算式)
4、提问:观察黑板上的这两个算式,你能说一说分数乘分数的计算方法吗?
5、通过学生讨论交流得到:分数乘分数,用分子乘分子,分母乘分母。
五、练习。
教材第4页“做一做”的第1、2题。
五、布置作业:练习一4~7
第四课时 分数乘分数(二)
教学内容:教材第5页例4,做一做1~3,练习一8~13。
教学目标:
1、掌握分数乘法计算过程中的约分方法,能正确熟练进行分数乘法计算,提高学生计算的能力。
2、能解答生活中简单的分数乘法问题,了解分数乘法在现实生活中的作用。
3、经历分数乘分数计算过程中的约分方法,感受成功的喜悦。
教学重点:掌握分数乘法计算过程中的约分方法。
教学难点:熟练掌握约分方法,提高计算的能力。
教学过程:
一、复习导入
1、算一算
×30= 12×= = =
交流时让学生说一说:(1)分数乘整数的约分方法。(2)分数乘分数的计算方法。
二、探索新知
1、出示例题4:无脊椎动物中游泳最快的是乌贼,它的速度是千米/分。
2、解决问题一:李叔叔的游泳速度是乌贼的。李叔叔每分钟游多少千米?
(1)阅读理解。学生阅读题目,理解题意。组织交流对题意的理解,得出:
①乌贼的速度是千米/分。
②李叔叔的游泳速度是千米/分的。
(2)列式解答。 让学生根据已掌握的计算方法独立解答,交流解答过程。师根据学生回答板书:
(㎞)
(3)启发思考。
在分数乘整数时,我们在计算过程中先约分,可以使计算简便。在这里,我们是否也可以进行先约分呢?该怎样进行约分呢?
学生独立思考,尝试计算。
(4)交流讨论。
组织全班交流,通过交流得出:分数乘分数,为了计算简便,可以先约分再乘。约分时,分子的两个因数和分母的两个因数进行约分,即:
(㎞)
3、解决问题二:乌贼30分钟可以游多少千米?
l 理解题意:a、提取题中已知条件和所求问题
已知条件 速度:乌贼的速度是千米/分
时间:30分钟
所求问题:乌贼30分钟可以游多少千米?
l 已知速度和时间,求路程,用乘法计算,列式为×30
(1)学生独立解答,约分:(㎞)
(2)教师指导:分数乘法也可以这样直接约分。板书:(㎞)
强调:分数和整数相乘,整数可以和分数的分母进行约分。
4、试一试。
还可以怎样进行约分呢?(强调:分数和分数相乘,可以采用分子和分母交约分。)
5、小结。在分数乘法计算过程中,能约分的,先约分再乘,这样可以使计算简便。
三、巩固练习
1、教材第5页“做一做”第1题。
这道题是分数乘法计算的练习,三个小题可以在计算过程中进行约分的。先让学生独立练习,再组织学生交流汇报,汇报时重点交流约分的方法。
2、教材第5页“做一做”第2题。
问题1:先让学生阅读题目,理解题意,根据“速度×时间=路程”的数量关系列出算式,再让学生独立计算,最后组织交流。强调能约分的要先约分再乘。
3、教材第5页“做一做”第3题。
四、课堂小结。
五、布置作业:练习一8~13
第五课时 分数乘分数(练习)
教学内容:分数乘法练习课
教学目标:
1、通过练习,进一步理解一个数乘分数的意义。
2、通过练习,进一步巩固分数乘法的计算方法,提高计算的能力。
3、培养学生良好的审题习惯。
教学重点:熟练掌握分数乘法的计算方法。
教学难点:培养学生解决实际问题的能力。
教学过程:
一、复习引入
1、复习旧知。
(1)一个数乘分数的意义是什么?
学生回忆一个数乘分数的意义,并回答问题。(一个数乘分数的意义是求这个数的几分之几是多少?)
(2)分数乘法的计算方法是什么?
学生回忆分数乘法的计算方法。(分子相乘的积作分子,分母相乘的积作分母,能约分的可以先约分再乘。)
2、导入新课。今天这节课,我们就一起做一些和分数乘法有关的练习吧!
二、探索新知
1、出示教材第6页“练习一”第3题。
这道题是分数乘整数的相关练习。每年上升m,50年就上升50个m,也就是×50;100年就上升100个m,也就是×100.
(米) (米)
2、出示教材第6页“练习一”第4题。
这道题是一个数乘分数意义的练习。先让学生独立列式解答,再组织交流,交流时让学生说说列式的依据是什么。
(1)(吨) (2) (吨)
3、出示教材第6页“练习一”第6题。
这是道改错题。第1个算式错在将整数与分数的分子相约分,第2个算式错在将分数加法与分数乘法计算混淆,把约分后的分子与分子相加,分母与分母相加。教学时让学生讨论交流,说说错在哪里?还可以结合学生平时易犯的错误,让学生纠正。
(错)订正: (错)订正:
4、出示教材第6页“练习一”第7题。
这道题是进行分数乘法的计算练习,可以先让学生独立计算,再进行交流。(提醒学生注意观察是否可以进行约分,能约分的可以先约分再乘。)
5、 出示教材第7页“练习一”第8题
据统计,2011年世界人均耕地面积为2500㎡,我国人均耕地面积占世界人均耕地面积的。我国人均耕地面积是多少平方米?
l 分析题意:我国人均耕地面积占世界人均耕地面积的,是将“世界人均耕地面积”当成单位“1”,把“我国人均耕地面积”当作比较量
l 这是一个很典型的“求一个数的几分之几是多少”的问题,根据前面所学的知识,这个题用乘法解答。
l 学生独立完成,汇报想法和结果。
6、出示教材第7面“练习一”第9题到第13题。
这6道题都是日常生活中常见的分数乘法问题,题目中涉及到许多课多知识,这些练习不仅可以加深学生对一个数乘分数意义的理解,巩固分数乘法的计算方法,而且可以拓宽学生的知识面,开阔学生的视野,增长见识。
练习时,可以先让学生独立阅卷并理解题目,然后再独立解答,最后组织交流汇报。
三、课堂小结:今天我们解决了许多分数乘法的问题,大家有哪些收获?
第六课时 小数乘分数
教学内容:教材第8页例5,做一做,练习二1~4。
教学目标:
1、在解决问题的过程中学习并掌握小数乘分数的计算方法。
2、经历小数乘分数的计算方法的探究过程。
3、体会算法多样化的数学思想,提高计算能力。
教学重点: 掌握小数乘分数的计算方法。
教学难点: 灵活选择不同的计算方法,熟练地进行小数乘分数的计算。
教学过程:
一、复习导入。
1、计算下面各题。
= = =
交流时让学生说一说计算方法和计算过程中的约分方法。
2、把下面的小数化成分数,分数化成小数。
1.2 0.4 3.5 1.25
让学生说一说怎样将一个小数化成分数?
二、探索新知
1、出示例题5:松鼠的尾巴长度约占身体长度的。松鼠欢欢的身体长2.1分米,松鼠乐乐的身体长2.4分米。
(1)、提取题中的已知条件和所求问题
已知条件:①松鼠的尾巴长度约占身体长度的,②松鼠欢欢的身体长2.1dm。
所求问题:松鼠欢欢的尾巴有多长?
(2)、确定单位“1”,根据“松鼠的尾巴长度约占身体长度的”可知,应把“松鼠欢欢的身体长”看作单位“1”,单位“1”已知,所求松鼠欢欢的尾巴有多长,就是求2.1dm的是多少,用乘法计算,列式为2.1×
启发观察,这个算式和我们前面学习的分数乘法有什么不同?
(3)探讨小数乘分数的计算方法。
提问:小数乘分数,可以怎样进行计算呢?想一想,试一试。
学生独立思考,尝试计算。组织交流,得出可以把2.1化成分数,也可以把化成小数。汇报交流计算方法,教师结合交流情况进行板书。
小数化成分数:==(分米)
分数化成小数:=2.1×0.75=1.575(分米)
3、解决问题二。
(1)出示问题:松鼠乐乐的尾巴有多长?
(2)学生独立解答。
组织交流汇报。交流时,先让学生说说列式的依据,再交流计算方法。
学生可能会采用问题一中学习的方法进行计算,这时教师可以追问:同学们,想想分数乘整数时,我们是怎样进行约分的,小数乘分数也能这样约分吗?
当学生有所发现后,让学生进行尝试计算,最后汇报交流。教师结合学生的交流情况进行板书:
小数和分母约分:(分米)
4、观察比较,回顾思考。
提问:观察上面三种计算方法,你想发表自己的什么见解?让学生独立思考后进行小组交流讨论,是后进行全班交流 。(三种方法中,小数化成分数的方法具有普遍性,适用于所有的小数乘分数的计算;当分数不能化成有限小数时,一般不采用分数化成小数的方法进行计算;当小数和分母不能进行约分时,一般不采用小数和分母约分的方法进行计算。三种方法中,小数和分母约分的方法计算起来最简便,因此在计算小数乘分数时,先观察这个小数能不能和分母进行约分,如果可以进行约分,一般采用先约分再乘的方法。)
三、巩固练习。
1、教材第8页“做一做”。先让学生独立计算,再组织汇报交流。交流时让学生说说为什么选择这样的方法进行计算。
2、教材第10页“练习二”第2题。
3、教材第10页“练习二”第3题。
第七课时 分数混合运算和简便计算
教学内容:教材第8页例6、例7,做一做1~2,练习一5~11。
教学目标:
1、懂得分数混合运算的顺序和整数混合运算的顺序相同,能熟练进行有关分数混合运算的计算。
2、知道整数乘法的运算定律对于分数乘法同样适用,并能够运用所学运算定律进行一些简便运算。
3、在观察、迁移、尝试学习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。
教学重点:会计算分数混合运算,能利用乘法的运算定律进行简便运算。
教学难点: 根据题目特点,灵活地运用定律进行简便计算。
教学过程
一、复习导入。
1、提问:整数混全运算顺序是怎么样的?
预设:先算乘、除法,再算加、减法。
2、追问:遇到有括号的题该怎么来计算?
预设:有括号的要先算小括号里面的,再算中括号里面的。
3、出示计算题并提出要求:观察下面各题,先说说运算顺序,再进行计算。
21×3+25 6×8-5×4 21×(36-14)
二、探索新知
1、向学生说明:分数混合运算的运算顺序和整数混合运算的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。
×+1 1-× 学生独立完成,小组内订正。
2、分数混合运算
出示例题6:一个画框,长米,宽米,做这个画框要多长的木条?
3、学生读题,理解题意。已知长方形画框的长是m,宽是m,求做这个画框所需要的木条的长度,就是求这个长方形画框的周长。
4、 学生独立列式。
或
启发自学,交流收获。
教师启发:两个算式都是分数混合运算,那分数混合运算的运算顺序是怎样的呢?
(1)请学生自学教材第9页的内容。
(2)指名交流汇报。引导学生发现:分数混合运算的顺序和整数混合运算的顺序相同。
5、学生独立完成计算过程,交流汇报。交流时,指名说说整数混合运算的顺序是什么?
(在一个没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先算第二级运算,再算第一级运算。在一个有括号的算式里,要先算括号里的运算,再算括号外的运算。)
6、分数乘法的简便计算。
(1)出示算式。
○ ○ ○
学生计算后,会发现每一行的两道算式结果相等,这时教师在每行的左右算式中间填上等号,并启发学生思考:每行两个算式的结果相等,这是数字的巧合呢?还是有一定的运算规律?
(2)指导观察,发现规律。
观察上面每组的两个算式,它们有什么关系?
引导学生通过观察比较,发现:第一组是两个因数交换了位置,运用了乘法交换律;第二组是三个数相乘,左边是先算前两个,右边是先算后两个,运用了乘法结合律;第三与这个数相乘,然后再相加。
(3)总结规律。
在学生回答的基础上,引导学生得出结论:在分数乘法中,也能使用乘法交换律、结合律、分配律。整数乘法中的运算定律在分数乘法中同样适用。
7、应用规律进行简便计算。
(1)出示例题7.
(2)让学生思考怎样计算比较简便,然后独立完成,如果遇到困难可以在小组里讨论交流。
交流时,让学生汇报自己的想法,分别说一说运用了哪种运算定律使计算简便。
三、巩固练习
1、教材第9页“做一做”第1题。让学生先观察算式分别有什么特点,思考应该如何计算才会比较简便。学生独立计算,并请个别学生上台板演,完成后集体讲评。
2、教材第9页“做一做”第2题。
四、课堂总结:
应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。
第八课时 分数混合运算和简便计算练习课
教学内容:教材第11页,分数混合运算和简便计算练习。
教学目标:
1、进一步巩固小数乘分数的计算方法,掌握分数混合运算的顺序和方法,能灵活运用乘法的运算定律进行一些简便计算。
2、提高学生分析问题和解决问题的能力。
3、让学生感受数学知识与日常生活的密切联系。
教学重点:提高计算能力和解决问题的能力。
教学难点:灵活运用所学知识解决问题。
教学过程:
一、复习引入
1、复习旧知
(1)小数乘分数可以怎样进行计算?
(2)分数混合运算的顺序是怎样的?
(3)分数混合运算可以应用哪些运算定律使计算简便?
2、你能用字母来表示乘法的交换律,结合律和分配律吗?
乘法交换律( )
组算式符合乘法分配律,左边是两个数的和与一个数相乘,右边是这两个数分别乘法结合律( )
乘法分配律( )
2、导入新课
今天这节课,我们就通过一些练习来提高计算能力和解决问题的能力。
二、探索新知
1、出示教材第10页“练习二”第1题。
这道题包含了学生学过的分数乘法的各种计算,有分数乘整数、分数乘分数,小数乘分数。练习时,先让学生独立计算,再组织交流,交流时让学生说说计算方法。
2、出示教材第10页“练习二”第4题。
蜂蜜最主要的成分是果糖和葡萄糖,果糖和葡萄糖的质量占蜂蜜总质量的以上。有一种蜂蜜,果糖和葡萄糖的质量占蜂蜜的。如果有2.5Kg的这种蜂蜜,其中的果糖和葡萄糖共有多少千克?
学生独立完成,然后汇报,说说自己想法。
3、出示教材第10页“练习二”第5题。
这道题是为了巩固分数混合运算顺序。
练习时,先让学生观察题目中的计算错在哪儿,再进行独立改错练习。
(错) 订正:
(错) 订正:
4、出示教材第11页“练习二”第7题
第一个图形是三角形,S三角形=ah=××=(㎡)
第二个图形是梯形,S梯形=(a+b)h
=(+)××
=(㎡)
5、出示教材第11页“练习二”第8题,分析:一朵花要用张纸,男生9朵,
那就用了9个张纸,女生剪了11朵,那就用了11个张纸
6、出示教材第11页“练习二”第9题,分析:先算出长方形的面积,再算长方形桌面比正方形桌面的面积少多少平方米?
三、课堂作业:教材第11页“练习二”第6、10题
第九课时 分数混合运算和简便计算练习课
教学内容:教材第12页,分数混合运算和简便计算练习。
教学目标:
1、进一步巩固小数乘分数的计算方法,掌握分数混合运算的顺序和方法,能灵活运用乘法的运算定律进行一些简便计算。
2、提高学生分析问题和解决问题的能力。
3、让学生感受数学知识与日常生活的密切联系。
教学重点:提高计算能力和解决问题的能力。
教学难点: 灵活运用所学知识解决问题。
教学过程:
一、 复习导入
1、根据运算定律填空。
×□×□ □×□+□×□
(□+□)×□
2、你知道在这一运算过程中应用了什么运算定律吗?
学生思考后回答。预设:使用了乘法交换律,乘法结合律。
二、基础练习
1、出示教材第11页“练习二”第11题
这道题是巩固分数乘法简便计算的练习。先让学生独立解答,再组织交流,交流时让学生说说思考的过程。
(这道题中的每个小题都可以用简便方法计算,其中连乘的计算可以用乘法交换律、结合律进行简便计算;而混合运算则可以运用乘法分配律进行简便计算,如可以先转化成再计算。
2、出示教材第13页“练习二”第13题,分析:可以先求每箱糖果的质量,
再求4箱糖果的质量,列式是:;
也可以先求4箱一共有多少袋,再求一共有多少千克,列式是。
3、出示教材第13页“练习二”第14题,分析:“其中可回收利用的垃圾占”,表示将“每天收到的70t垃圾”当作单位“1”,单位“1”已知。先要求出每天收的垃圾中有多少吨可回收利用。就是求70的是多少,用乘法计算。然后再求出15天收到的垃圾中有多少吨可回收利用。
也可以先求15天一共收到多少生活垃圾,再求这些垃圾有多少可以回收利用。。
4、出示教材第13页“练习二”第15题
分析:先求尼罗河长度的有多长,再求长江的全长。列式是:
5、出示教材第13页“练习二”第16题。
分析:先把左边算式按照分数乘法的计算方法进行计算,再把左右两边的分数转化成分子相同或者分母相同的分数,最后根据分数大小比较的方法确定出□里最大可以填整数几。
(1)原式可以转化为,由此可以得出,□〈16,所以□里最大可以填整数15.
(2)原式可以转化为〈即〈.由此可得出,□×4〈25,所以□里最大可以填整数6.
(3)原式可以转化为〈,即〈。由此得出,5×□〈28,所以□里最大可以填整数5.
三、课堂练习:练习二第12题
第十课时 解决问题(一)
教学内容:教材第13页例8,做一做。
教学目标:
1、理解并掌握分数连乘问题的解题思路与方法。
2、经历解决问题的全过程,掌握解决问题的各个步骤,提高分析问题和解决问题的能力。
3、感受数学与生活的联系,体会解题策略的多样性。
教学重点:理解并掌握分数连乘问题的解题思路与方法。
教学难点: 理解并掌握各种不同的解题策略,灵活运用知识解决分数连乘问题。
教学过程:
一、 创设情境,探索新知。
1、揭示课题:我们已经学过了分数乘法的知识,今天我们就利用这些知识来解决一些实际问题(板书:解决问题)(课件出示例8情境图,但不出示问题)
这个大棚共480㎡,其中一半种各种萝卜。红萝卜的面积占整块萝卜地的
2、提取信息:从这幅图中你得到了哪些信息?
根据题意,完成以下填空。
整个大棚的面积是 。
萝卜地的面积占整个大棚面积的 。
红萝卜地的面积占萝卜地面积的 。要求的是 的面积。
3、分析与解答
(1)用长方形纸表示大棚的面积,折出萝卜地的面积。
①认识一半用分数表示就是 ②学生折一折。
让学生取了一张长方形纸,代表大棚的面积,然后折出各种萝卜地的面积。
③计算出萝卜地的面积:480×=240(㎡)
(2)折出红萝卜地的面积。
①交流:怎样折出红萝卜地的面积?
(红萝卜地占萝卜地的,也就是占大棚一半的,先折出整张纸的一半,再折出一半的。)
②学生动手折一折。
③计算出红萝卜地的面积:240×=60(㎡)
(3)列综合算式解答。 480××=60(㎡)
(4)探讨不同的解题方法。
①教师让学生将整张纸展开,观察并说说:从这张纸上,你能看出红萝卜地的面积占大棚面积的几分之几吗?
②小组交流。
提问:你还有其他方法来计算红萝卜地的面积吗?
学生独立思考后进行小组交流。
③组织汇报。先求红萝卜地的面积占大棚面积的几分之几:
再求出红萝卜地的面积:480×=60(㎡)综合算式:480×(×)=60(㎡)
4、回顾与反思
(1)教师启发:刚才我们用两种不同的解题方法求出了红萝卜地的面积是60㎡,现在我们能写答句了吗?对,不能,因为我们还没有对这个答案进行检验。大家能用自己喜欢的方法来检验一下这个答案的合理性吗?
(2)学生尝试检验。教师巡视,辅导有困难的学生。
(3)组织全班交流。
二、巩固练习:教材第14页“做一做”。指名学生按照阅读与理解、分析与解答、回顾与反思三个环节展开交流。
三、课堂小结:解答“求一个数的几分之几是多少”的应用题的解题步骤是什么?
(找出分率句、确定单位“1”,画出线段图帮助理解题意,最后再列式解答)
第十一课时 解决问题(二)
教学内容:教材第14、15页例9,做一做。
教学目标:
1、理解并掌握“求一个数比另一个数多(少)几分之几”的问题的解题思路和解题方法。
2、经历解题过程,掌握解题步骤,学会用线段图分析问题。
3、提高学生分析问题和解决问题的能力。
教学重点:理解并掌握“求一个数比另一个数多(少)几分之几”的问题的解题思路和解题方法。
教学难点:灵活运用分数乘法的知识解决日常生活中的相关问题。
教学过程:
一、 复习导入。
1、读题并说出单位“1”。
(1)黑兔只数是白兔的。
(2)黑兔只数的等于白兔只数。
(3)苹果的数量相当于梨的.
(4)苹果树占果园面积的。
(5)钢笔的价钱比圆珠比贵
2、口头列式
(1)小红有120元压岁钱,买文具用了,买文具用了多少钱?
(2)汽车每小时可行80千米,火车每小时比汽车快,火车每小时比汽车多行多少千米?
二、探索新知
1、出示例题9。人心脏跳动的次数随年龄而变化。青少年心跳每分钟约75分,婴儿每分钟心跳的次数比青少年多。婴儿每分钟心跳多少次?
(1)学生独立读题后,交流从题目中获得的信息。
完成教材例题9中“阅读与理解”的填空。
(2)分析与解答。
①找单位“1”。提问:题目中的是把谁看作单位“1”?(青少年每分钟心跳的次数)
②画线段图进行分析。
交流画线段图的方法:题目中有“青少年”和“婴儿”两种量,一般要用两条线段来表示;画线段图时,把单位“1”的量画在上面,比较量画在下面;把单位“1
的量平均分成5份,婴儿心跳次数比青少年多的部分相当于5份中的4份。
教师结合学生的交流情况板书线段图:
“1”
青少年:
75次 比青少年多
婴儿:
?次
③交流解题思路。
学生结合线段图,在小组内交流解题思路。
④独立解答。教师巡视,辅导有困难的学生。
⑤全班交流。
组织交流汇报,汇报时让学生说说是根据哪种解题思路进行解答的。
解法一:75+75× 解法二:75×(1+)
=75+60 =75×
=135(次) =135(次)
(3)回顾与反思。
①回顾分析题意时采用的方法以及采用这种方法的好处。
②检验计算结果的合理性。
2、教材第15页“做一做”
(1)学生读题,理解题意。
(2)介绍有关“噪音危害”的知识。
(3)学生尝试画线段图进行分析与解答。
(4)组织全班交流。
3、小结。“求一个数比另一个数多(少)几分之几” 的问题,解决这类问题时,我们可以先从关键句中找出单位“1”,然后画出线段图来弄清解题思路,再解答。
三、全课小结:这节课你有什么收获?
第十二课时 解决问题练习课
教学内容:教材第16页。
教学目标:
1、熟练解答连续求一个数的几分之几是多少和比一个数多(或少)几分之几的数是多少的实际问题。
2、掌握解决问题的思路,学会画图分析数量关系。
3、在练习过程中培养分析问题和解决问题的能力。
教学重点:能正确判断单位“1”
教学难点:理解题中单位“1”和的求量的关系。
教学过程:
一、 快乐热身
1、六(1)班有50人,女生人数占,把( )看作单位“1”,意思是( )是( )的等量关系是( )。
2、一个养鸡场养鸡1200只,养鸭的只数比鸡的只数多,养鸭多少只?
分析:鸭比鸡的只数多,说明把鸡的只数看作单位“1”,鸭比鸡多,就是,求鸭的只数也就是求1200的是多少。
学生思考后解答,汇报下想法。
3、一箱鸡蛋重20千克,卖出 ,还剩多少千克?
画出线段图后列式计算:20-20× 20×(1-)
4、一个苹果园去年自产苹果65吨,今年比去年增产 ,今年多少吨?
(1)找倍数句。 (2)确定单位“1”。
(3)分析重点句。 (4)画线段图。
(5)列式计算:65×(1+)
二、巩固提升
1、出示练习三第1题
人体血液在动脉中的流动速度是50厘米/秒,在静脉中的流动速度是动脉中的,在毛细血管中的流动速度只有静脉中的,血液在毛细血管中每秒流动多少厘米?
(1) 引导学生找到已知条件和所求问题。
(2) 分析题意,理清解题思路。
分析:要求“血液在毛细血管中每秒流动多少厘米”,可以根据“在毛细血管中的流动速度只有静脉中的”这一条件,但因为静脉中的血流速度不知道,所以这个题要先求出血液在静脉中的血流速度。
解答:(㎝) 答:血液在毛细血管中每秒流动厘米
2、 出示练习三第2题
海象的寿命大约是40年,海狮的寿命是海象的,海豹的寿命是海狮的。海豹的寿命大约是多少年?
(1)、读题,理解题目意思。
(2)、分析题意,理清解题思路。
分析:海狮的寿命是海象的,是把海象的寿命看作单位“1”,求海狮的寿命就是求海象寿命的是多少,也就是40的是多少。
海豹的寿命是海狮的,是把海狮的寿命看作单位“1”,求海豹的寿命就是求海狮的是多少。
解答:(年) 答:海豹的寿命大约是20年。
3、 鸡的孵化期是21天,鸭的孵化期比鸡长。鸭的孵化期是多少天?
(1)、读题,理解题目意思。
(2)、分析题意,理清解题思路。
分析:“鸭的孵化期比鸡长”这句话的意思是:鸭的孵化期比鸡要长,长的天数是鸡的孵化期的,这里是把鸡的孵化期看作单位“1”. 鸭的孵化期比鸡长,就是,求鸭的孵化期就是求21的是多少。
解答:(天) 答:鸭的孵化期是28天。
三、归纳总结:求比一个数多或少几分之几是多少的问题怎么解答?(做题时一定要注意抓住题目中关键句子分析,找到谁与谁比,谁是表示单位“1”的数量,如果理解题意有困难,可以画线段图帮助分析。)
四、课堂练习 练习三第3、4、6、7题。
第十三课时 解决问题练习课
教学内容:解决问题补充练习。
教学目标:
1、分析实际问题中的数量关系,会用线段图来分析问题,能够准确地说出比较量是标准量的几分之几
2、通过分析,练习,提高学生的绘图能力,分析能力。
3、在练习过程中培养分析问题和解决问题
展开阅读全文