资源描述
8.2 消元-二元一次方程组的解法
教学目标:1.会用代入法解二元一次方程组.
2.初步体会解二元一次方程组的基本思想――“消元”.
3.通过研究解决问题的方法,培养学生合作交流意识与探究精神.
重点:用代入消元法解二元一次方程组.
难点:探索如何用代入法将“二元”转化为“一元”的消元过程.
教学过程:
一、知识回顾
1、什么是二元一次方程及二元一次方程的解?
2、什么是二元一次方程组及二元一次方程组的解?
二、提出问题,创设情境
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?
在上述问题中,我们可以设出两个未知数,列出二元一次方程组.
这个问题能用一元一次方程解决吗?
三、讲授新课
1、那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?
2、提出问题:从上面的学习中体会到代入法的基本思路是什么?主要步骤有哪些呢?
归纳:基本思路: “消元”——把“二元”变为“一元”。
(消元思想与代入消元法的意义
(1)将未知数的个数由多化少,逐一解决的想法是消元思想,而根据一个方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解是代入消元法.
(2)用代入消元法解二元一次方程组的一般步骤:)
主要步骤是:1)将其中的一个方程中的某个未知数用含有另一个未知数的代数式表现出来:
2)并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程。
( 3)解这个一元一次方程.
4)把求的的一次方程的解代入方程中,求得另一个未知数的值,组成方程组的解)
这种解方程组的方法称为代入消元法,简称代入法。
3、把下列方程写成用含x的式子表示y的形式:
(1)2x-y=3 (2)3x+y-1=0 (3)5x-3y = x + y (4)-4x+y = -2
4、例题分析:例1 例2
5、课堂练习:教科书P98 第2题
四、课堂小结
问题1、解方程组的基本思路是什么?
问题2、解方程组的方法是什么?
五、作业布置:教科书P99第3、4题 P103 第1、2题
8.2 消元(第二课时)
教学目标:1.用代入法、加减法解二元一次方程组.(会用加减法解二元一次方程组.)毛
2.了解解二元一次方程组时的“消元思想”,“化未知为已知”的化归思想.(进一步体会解二元一次方程组的基本思想——消元.)
(3.在探究方程组解法的过程,发展学生的观察、分析及运算等基本能力.)
教学重点:用代入法、加减法解二元一次方程组.
教学难点:会用二元一次方程组解决实际问题
教学过程
一、创设情境,导入新课
甲、乙、丙三位同学是好朋友,平时互相帮助。甲借给乙10元钱,乙借给丙8元钱,丙又给甲12元钱,如果允许转帐,最后甲、乙、丙三同学最终谁欠谁的钱,欠多少?
二、师生互动,课堂探究
(一)提高问题,引发讨论
①②
我们知道,对于方程组, 可以用代入消元法求解。
这个方程组的两个方程中,y的系数有什么关系?利用这种关系你能发现新的消元方法吗?
(学生尝试解方程组,教师巡回观察指导,并请三位解法不同的同学到黑板上板演)
(二)导入知识,解释疑难
1.问题的解决
上面的两个方程中未知数y的系数相同,②-①可消去未知数y,得(2x+y)-(x+y)=40-22即x=18,把x=18代入①得y=4。另外,由①-②也能消去未知数y,得(x+y)-(2x+y)=22-40即-x=-18,x=18,把x=18代入①得y=4.
①②
2.想一想:联系上面的解法,想一想应怎样解方程组
分析:这两个方程中未知数y的系数互为相反数,因此由①+②可消去未知数y,从而求出未知数x的值。
解:由①+②得19x=11.6x=
把x=代入①得y=-∴这个方程组的解为
3.加减消元法的概念
从上面两个方程组的解法可以发现,把两个二元一次方程的两边分别进行相加减,就可以消去一个未知数,得到一个一元一次方程。
两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
①②
4.例题讲解
用加减法解方程组
(分析:这两个方程中没有同一个未知数的系数相反或相同,直接加减两个方程不能消元,试一试,能否对方程变形,使得两个方程中某个未知数的系数相反或相同。)
议一议:本题如果用加减法消去x应如何解?解得结果与上面一样吗?
5.做一做
①②
解方程组
分析:本题不能直接运用加减法求解,要进行化简整理后再求解。
6.想一想
(1)加减消元法解二元一次方程组的基本思想是什么?
(2)用加减消元法解二元一次方程组的主要步骤有哪些?
师生共析:
(1)用加减消元法解二元一次方程组的基本思路仍然是“消元”.
(2)用加减法解二元一次方程组的一般步骤:
第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,可以直接把两个方程的两边相减,消去这个未知数.
第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元.
第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,常数项在方程的右边的形式,再作如上加减消元的考虑.
(三)归纳总结,知识回顾
本节课,我们主要是学习了二元一次方程组的另一解法──加减法.通过把方程组中的两个方程进行相加或相减,消去一个未知数,化“二元”为“一元”.
作业:P98练习
8.2 消元(第三课时)
(教学目标:1.能根据方程组的特点选择较简单的方法解方程组,提高运算速度与准确度.
2.能列方程组解决较简单的应用题,发展分析、解决问题的能力.
重点:能根据二元一次方程组的特点选择较简单的方法解二元一次方程组.
难点:分析应用题中的数量关系列方程组.
教学过程:)
一、创设情境,导入新课
七年级(3)班在上体育课时,进行投篮比赛,体育老师做好记录,并统计了在规定时间内投进n个球的人数分布情况,体育委员在看统计表时,不慎将墨水沾到表格上(如下表).
进球数n
0
1
2
3
4
5
投进球的人数
1
2
7
●
●
2
同时,已知进球3个和3个以上的人平均每人投进3.5个球;进球4个和4个以下的人平均每人投进2.5个球,你能把表格中投进3个球和投进4个球对应的人数补上吗?
二、师生互动,课堂探究
(一)指出问题,引发讨论
你能不能用二元一次方程组,帮助体育委员把表格中的两个数字补上呢?
(经过学生思考、讨论、交流)
(二)导入知识,解释疑难
1.例题讲解(见P101)
(分析:如果1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷,那么2台大收割机和5台小收割机1小时收割小麦______公顷,3台大收割机和2台小收割机1小时收割小麦_______公顷.)
解:设1台大收割机和1台小收割机1小时各收割小麦x公顷和y公顷.根据两种工作方式中的相等关系,得方程组
①②
去括号,得
②-①,得11x=4.4
解这个方程,得x=0.4
把x=0.4代入①,得y=0.2
这个方程组的解是
答:1台大收割机和1台小收割机1小时各收割小麦0.4公顷和0.2公顷.
2.上面解方程组的过程可以用下面的框图表示:
3.练一练:P102练习第2、3题.
(三)归纳总结,知识回顾
这节课我们经历和体验了列方程组解决实际问题的过程,体会到方程组是刻画现实世界的有效模型,从而更进一步提高了我们应用数学的意识及解方程组的技能.
布置作业 P103 6、7、9题
展开阅读全文