收藏 分销(赏)

高等数学教案各章的教学目的、重点、难点.doc

上传人:精**** 文档编号:10337297 上传时间:2025-05-23 格式:DOC 页数:9 大小:48.01KB
下载 相关 举报
高等数学教案各章的教学目的、重点、难点.doc_第1页
第1页 / 共9页
高等数学教案各章的教学目的、重点、难点.doc_第2页
第2页 / 共9页
点击查看更多>>
资源描述
第一章 函数与极限 教学目的: 1、 理解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。 2、 了解函数的奇偶性、单调性、周期性和有界性。 3、 理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4、 掌握基本初等函数的性质及其图形。 5、 理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。 6、 掌握极限的性质及四则运算法则。 7、 了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。 8、 理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。 9、 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 10、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。 教学重点: 1、 复合函数及分段函数的概念; 2、 基本初等函数的性质及其图形; 3、 极限的概念极限的性质及四则运算法则; 4、 两个重要极限; 5、 无穷小及无穷小的比较; 6、 函数连续性及初等函数的连续性; 7、 区间上连续函数的性质。 教学难点: 1、 分段函数的建立与性质; 2、 左极限与右极限概念及应用; 3、 极限存在的两个准则的应用; 4、 间断点及其分类; 闭区间上连续函数性质的应用。 第二章 导数与微分 教学目的: 1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系。 2、熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。 3、 了解高阶导数的概念,会求某些简单函数的n阶导数。 4、 会求分段函数的导数。 5、 会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数。 教学重点: 1、导数和微分的概念与微分的关系; 2、导数的四则运算法则和复合函数的求导法则; 3、基本初等函数的导数公式; 4、高阶导数; 6、 隐函数和由参数方程确定的函数的导数。 教学难点: 1、复合函数的求导法则; 2、分段函数的导数; 3、反函数的导数 4、隐函数和由参数方程确定的导数。 第三章 中值定理与导数的应用 教学目的: 1、 理解并会用罗尔定理、拉格朗日中值定理,了解柯西中值定理和泰勒中值定理。 2、 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用。 3、 会用二阶导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。 4、 掌握用洛必达法则求未定式极限的方法。 5、 知道曲率和曲率半径的概念,会计算曲率和曲率半径。 6、 知道方程近似解的二分法及切线性。 教学重点: 1、罗尔定理、拉格朗日中值定理; 2、函数的极值 ,判断函数的单调性和求函数极值的方法; 3、函数图形的凹凸性; 4、洛必达法则。 教学难点: 1、罗尔定理、拉格朗日中值定理的应用; 2、极值的判断方法; 3、图形的凹凸性及函数的图形描绘; 4、洛必达法则的灵活运用。 第四章 不定积分 教学目的: 1、 理解原函数概念、不定积分的概念。 2、 掌握不定积分的基本公式,掌握不定积分的性质,掌握换元积分法(第一,第二)与分部积分法。 3、 会求有理函数、三角函数有理式和简单无理函数的积分。 教学重点: 1、 不定积分的概念; 2、 不定积分的性质及基本公式; 3、 换元积分法与分部积分法。 教学难点: 1、 换元积分法; 2、 分部积分法; 3、三角函数有理式的积分。 第五章 定积分 教学目的: 4、 理解定积分的概念。 5、 掌握定积分的性质及定积分中值定理,掌握定积分的换元积分法与分部积分法。 6、 理解变上限定积分定义的函数,及其求导数定理,掌握牛顿—莱布尼茨公式。 7、 了解广义积分的概念并会计算广义积分。 教学重点: 1、 定积分的性质及定积分中值定理 2、 定积分的换元积分法与分部积分法。 3、 牛顿—莱布尼茨公式。 教学难点: 1、 定积分的概念 2、 积分中值定理 3、 定积分的换元积分法分部积分法。 4、变上限函数的导数。 第六章 定积分的应用 教学目的 1、理解元素法的基本思想; 2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积)。 3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均值等)。 教学重点: 1、 计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积。 2、计算变力所做的功、引力、压力和函数的平均值等。 教学难点: 1、 截面面积为已知的立体体积。 2、引力。 第七章 空间解析几何与向量代数 教学目的: 1、理解空间直角坐标系,理解向量的概念及其表示。 2、掌握向量的运算(线性运算、数量积、向量积、混合积),掌握两个向量垂直和平行的条件。 3、理解单位向量、方向数与方向余弦、向量的坐标表达式,熟练掌握用坐标表达式进行向量运算的方法。 4、掌握平面方程和直线方程及其求法。 5、会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。 6、点到直线以及点到平面的距离。 7、理解曲面方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。 8、了解空间曲线的参数方程和一般方程。 9、了解空间曲线在坐标平面上的投影,并会求其方程。 教学重点: 1、向量的线性运算、数量积、向量积的概念、向量运算及坐标运算; 2、两个向量垂直和平行的条件; 3、平面方程和直线方程; 4、平面与平面、平面与直线、直线与直线之间的相互位置关系的判定条件; 5、点到直线以及点到平面的距离; 6、常用二次曲面的方程及其图形; 7、旋转曲面及母线平行于坐标轴的柱面方程; 8、空间曲线的参数方程和一般方程。 教学难点: 1、向量积的向量运算及坐标运算; 2、平面方程和直线方程及其求法; 3、点到直线的距离; 4、二次曲面图形; 5、旋转曲面的方程; 第八章 多元函数微分法及其应用 教学目的: 1、 理解多元函数的概念和二元函数的几何意义。 2、 了解二元函数的极限与连续性的概念,以及有界闭区域上的连续函数的性质。 3、 理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。 4、 理解方向导数与梯度的概念并掌握其计算方法。 5、 掌握多元复合函数偏导数的求法。 6、 会求隐函数(包括由方程组确定的隐函数)的偏导数。 7、 了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。 8、 了解二元函数的二阶泰勒公式。 9、 理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格郎日乘数法求条件极值,会求简多元函数的最大值和最小值,并会解决一些简单的应用问题。 教学重点: 1、 二元函数的极限与连续性; 2、 函数的偏导数和全微分; 3、 方向导数与梯度的概念及其计算; 4、 多元复合函数偏导数; 5、 隐函数的偏导数 6、 曲线的切线和法平面及曲面的切平面和法线; 7、 多元函数极值和条件极值的求法。 教学难点: 1、 二元函数的极限与连续性的概念; 2、 全微分形式的不变性; 3、 复合函数偏导数的求法; 4、 二元函数的二阶泰勒公式; 5、 隐函数(包括由方程组确定的隐函数)的偏导数; 6、 拉格郎日乘数法; 7、 多元函数的最大值和最小值。 第九章 重积分 教学目的: 1、理解二重积分、三重积分的概念,了解重积分的性质,知道二重积分的中值定理。 2、掌握二重积分的(直角坐标、极坐标)计算方法。 3、掌握计算三重积分的(直角坐标、柱面坐标、球面坐标)计算方法。 4、会用重积分求一些几何量与物理量(平面图形的面积、体积、重心、转动惯量、引力等)。 教学重点: 1、二重积分的计算(直角坐标、极坐标); 2、三重积分的(直角坐标、柱面坐标、球面坐标)计算。 3、二、三重积分的几何应用及物理应用。 教学难点: 1、 利用极坐标计算二重积分; 2、 利用球坐标计算三重积分; 3、 物理应用中的引力问题。 第十章 曲线积分与曲面积分 教学目的: 1. 理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。 2. 掌握计算两类曲线积分的方法。 3. 熟练掌握格林公式并会运用平面曲线积分与路径无关的条件,会求全微分的原函数。 4. 了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,了解高斯公式、斯托克斯公式,会用高斯公式计算曲面积分。 5. 知道散度与旋度的概念,并会计算。 6. 会用曲线积分及曲面积分求一些几何量与物理量。 教学重点: 1、 两类曲线积分的计算方法; 2、 格林公式及其应用; 3、 两类曲面积分的计算方法; 4、 高斯公式、斯托克斯公式; 5、 两类曲线积分与两类曲面积分的应用。 教学难点: 1、 两类曲线积分的关系及两类曲面积分的关系; 2、 对坐标的曲线积分与对坐标的曲面积分的计算; 3、 应用格林公式计算对坐标的曲线积分; 4、 应用高斯公式计算对坐标的曲面积分; 5、 应用斯托克斯公式计算对坐标的曲线积分。 第十一章 无穷级数 教学目的: 1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。 2.掌握几何级数与P级数的收敛与发散的条件。 3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法。 4.掌握交错级数的莱布尼茨判别法。 5.了解任意项级数绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系。 6.了解函数项级数的收敛域及和函数的概念。 7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法。 8.了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些常数项级数的和。 9.了解函数展开为泰勒级数的充分必要条件。 10.掌握,和的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。 11. 了解傅里叶级数的概念和函数展开为傅里叶级数的狄利克雷定理,会将定义在[-l,l]上的函数展开为傅里叶级数,会将定义在[0,l]上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和的表达式。 教学重点 : 1、级数的基本性质及收敛的必要条件。 2、正项级数收敛性的比较判别法、比值判别法和根值判别; 3、交错级数的莱布尼茨判别法; 4、幂级数的收敛半径、收敛区间及收敛域; 5、,和的麦克劳林展开式; 6、傅里叶级数。 教学难点: 1、比较判别法的极限形式;2、莱布尼茨判别法; 3、任意项级数的绝对收敛与条件收敛;4、函数项级数的收敛域及和函数;5、泰勒级数;6、傅里叶级数的狄利克雷定理。 第十二章 微分方程 教学目的: 1.了解微分方程及其解、阶、通解,初始条件和特等概念。 2.熟练掌握变量可分离的微分方程及一阶线性微分方程的解法。 3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。 4. 会用降阶法解下列微分方程:,和 5. 理解线性微分方程解的性质及解的结构定理。 6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。 7.求自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。 8.会解欧拉方程,会解包含两个未知函数的一阶常系数线性微分方程组。 9.会解微分方程组(或方程组)解决一些简单的应用问题。 教学重点: 1、可分离的微分方程及一阶线性微分方程的解法 2、可降阶的高阶微分方程,和 3、二阶常系数齐次线性微分方程; 4、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程; 教学难点: 1、 齐次微分方程、伯努利方程和全微分方程; 2、 线性微分方程解的性质及解的结构定理; 3、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解。 4、欧拉方程
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服