资源描述
资料
一. 不等式的性质:
二.不等式大小比较的常用方法:
1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果;
2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化;
6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。其中比较法(作差、作商)是最基本的方法。
三.重要不等式
1.(1)若,则 (2)若,则(当且仅当时取“=”)
2. (1)若,则 (2)若,则(当且仅当时取“=”)
(3)若,则 (当且仅当时取“=”)
3.若,则 (当且仅当时取“=”);
若,则 (当且仅当时取“=”)
若,则 (当且仅当时取“=”)
若,则 (当且仅当时取“=”)
若,则 (当且仅当时取“=”)
4.若,则(当且仅当时取“=”)
注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.
(2)求最值的条件“一正,二定,三取等”
(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.
5.a3+b3+c3≥3abc(a,b,c Î R+), ≥(当且仅当a=b=c时取等号);
6. (a1+a2+……+an)≥(ai Î R+,i=1,2,…,n),当且仅当a1=a2=…=an取等号;
变式:a2+b2+c2≥ab+bc+ca; ab≤( )2 (a,bÎ R+) ; abc≤( )3(a,b,c Î R+)
a≤ ≤≤ ≤≤b.(0<a≤b)
7.浓度不等式:< < ,a>b>n>0,m>0;
应用一:求最值
例1:求下列函数的值域(1)y=3x 2+ (2)y=x+
解题技巧:
技巧一:凑项 例1:已知,求函数的最大值。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
技巧二:凑系数
例1. 当时,求的最大值。
技巧三: 分离 例3. 求的值域。
技巧四:换元
解析二:本题看似无法运用基本不等式,可先换元,令t=x+1,化简原式在分离求最值。
当,即t=时,(当t=2即x=1时取“=”号)。
技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数的单调性。例:求函数的值域。
解:令,则
因,但解得不在区间,故等号不成立,考虑单调性。
因为在区间单调递增,所以在其子区间为单调递增函数,故。
所以,所求函数的值域为。
2.已知,求函数的最大值.;3.,求函数的最大值.
条件求最值
1.若实数满足,则的最小值是 .
分析:“和”到“积”是一个缩小的过程,而且定值,因此考虑利用均值定理求最小值,
解: 都是正数,≥
当时等号成立,由及得即当时,的最小值是6.
变式:若,求的最小值.并求x,y的值
技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。
2:已知,且,求的最小值。
技巧七、已知x,y为正实数,且x 2+=1,求x的最大值.
分析:因条件和结论分别是二次和一次,故采用公式ab≤。
同时还应化简中y2前面的系数为 , x=x =x·
下面将x,分别看成两个因式:
x·≤== 即x=·x ≤
技巧八:已知a,b为正实数,2b+ab+a=30,求函数y=的最小值.
分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。
法一:a=, ab=·b= 由a>0得,0<b<15
令t=b+1,1<t<16,ab==-2(t+)+34∵t+≥2=8
∴ ab≤18 ∴ y≥ 当且仅当t=4,即b=3,a=6时,等号成立。
法二:由已知得:30-ab=a+2b∵ a+2b≥2 ∴ 30-ab≥2
令u= 则u2+2u-30≤0, -5≤u≤3
∴≤3,ab≤18,∴y≥
点评:①本题考查不等式的应用、不等式的解法及运算能力;②如何由已知不等式出发求得的范围,关键是寻找到之间的关系,由此想到不等式,这样将已知条件转换为含的不等式,进而解得的范围.
变式:1.已知a>0,b>0,ab-(a+b)=1,求a+b的最小值。
2.若直角三角形周长为1,求它的面积最大值。
技巧九、取平方
5、已知x,y为正实数,3x+2y=10,求函数W=+的最值.
解法一:若利用算术平均与平方平均之间的不等关系,≤,本题很简单
+ ≤==2
解法二:条件与结论均为和的形式,设法直接用基本不等式,应通过平方化函数式为积的形式,再向“和为定值”条件靠拢。
W>0,W2=3x+2y+2·=10+2·≤10+()2·()2 =10+(3x+2y)=20
∴ W≤=2
应用二:利用基本不等式证明不等式
1.已知为两两不相等的实数,求证:
1)正数a,b,c满足a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc
例6:已知a、b、c,且。求证:
分析:不等式右边数字8,使我们联想到左边因式分别使用基本不等式可得三个“2”连乘,又,可由此变形入手。
解:a、b、c,。。同理,。上述三个不等式两边均为正,分别相乘,得
。当且仅当时取等号。
应用三:基本不等式与恒成立问题
例:已知且,求使不等式恒成立的实数的取值范围。
解:令,
。 ,
应用四:均值定理在比较大小中的应用:
例:若,则的大小关系是 .
分析:∵ ∴(
∴R>Q
四.不等式的解法.
1.一元一次不等式的解法。2.一元二次不等式的解法
3.简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现的符号变化规律,写出不等式的解集。如
(1)解不等式。
(答:或);
(2)不等式的解集是____
(答:或);
(3)设函数、的定义域都是R,且的解集为,的解集为,则不等式的解集为______
(答:);
(4)要使满足关于的不等式(解集非空)的每一个的值至少满足不等式中的一个,则实数的取值范围是______.
(答:)
4.分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。如
(1)解不等式
(答:);
(2)关于的不等式的解集为,则关于的不等式的解集为____________
(答:).
5.指数和对数不等式。
6.绝对值不等式的解法:
(1)含绝对值的不等式|x|<a与|x|>a的解集
(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法
①|ax+b|≤c-c≤ax+b≤c;
②| ax+b|≥c ax+b≥c或ax+b≤-c.
(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法
方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;
方法二:利用“零点分段法”求解,体现了分类讨论的思想;
方法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想。
方法四:两边平方。
例1:解下列不等式:
【解析】:(1)解法一(公式法)
原不等式等价于x2-2x>x或x2-2x<-x 解得x>3或x<0或0<x<1
∴原不等式的解集为﹛x︱x<0或0<x<1或x>3﹜
解法2(数形结合法)
作出示意图,易观察原不等式的解集为﹛x︱x<0或0<x<1或x>3﹜
第(1)题图 第(2)题图
【解析】:此题若直接求解分式不等式组,略显复杂,且容易解答错误;若能结合反比例函数图象,则解集为,结果一目了然。
例2:解不等式:
【解析】作出函数f(x)=|x|和函数g(x)=的图象,
易知解集为
例3:。
【解法1】令
令,分别作出函数g(x)和h(x)的图象,知原不等式的解集为
【解法2】原不等式等价于
令
分别作出函数g(x)和h(x)的图象,易求出g(x)和h(x)的图象的交点坐标为
所以不等式的解集为
【解法3】 由的几何意义可设F1(-1,0),F2(1,0),M(x,y),若,可知M的轨迹是以F1、F2为焦点的双曲线的右支,其中右顶点为(,0),由双曲线的图象和|x+1|-|x-1|≥知x≥.
7.含参不等式的解法:求解的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”注意解完之后要写上:“综上,原不等式的解集是…”。注意:按参数讨论,最后应按参数取值分别说明其解集;但若按未知数讨论,最后应求并集. 如
(1)若,则的取值范围是__________(答:或);
(2)解不等式
(答:时,;时,或;时,或)
提醒:(1)解不等式是求不等式的解集,最后务必有集合的形式表示;(2)不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值。如关于的不等式 的解集为,则不等式的解集为__________(答:(-1,2))
五.绝对值三角不等式
定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立。
注:(1)绝对值三角不等式的向量形式及几何意义:当,不共线时,|+|≤||+||,它的几何意义就是三角形的两边之和大于第三边。
(2)不等式|a|-|b|≤|a±b|≤|a|+|b|中“=”成立的条件分别是:不等式|a|-|b|≤|a+b|≤|a|+|b|,在侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|。
定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)时,等号成立。
例1.已知,,,求证
.
例2.(1)求函数的最大和最小值;
(2)设,函数.
若,求的最大值
例3.两个施工队分别被安排在公路沿线的两个地点施工,这两个地点分别位于公路路牌的第10km和第20km处.现要在公路沿线建两个施工队的共同临时生活区,每个施工队每天在生活区和施工地点之间往返一次.要使两个施工队每天往返的路程之和最小,生活区应该建于何处?
六. 柯西不等式
等号当且仅当或时成立(k为常数,)
类型一:利用柯西不等式求最值
1.求函数的最大值
一:∵且, ∴函数的定义域为,且,
即时函数取最大值,最大值为
二:∵且, ∴函数的定义域为
由,
得 即,解得
∴时函数取最大值,最大值为.当函数解析式中含有根号时常利用柯西不等式求解
类型二:利用柯西不等式证明不等式
2.设、、为正数且各不相等,求证:
又、、各不相等,故等号不能成立
∴。
类型三:柯西不等式在几何上的应用
6.△ABC的三边长为a、b、c,其外接圆半径为R,求证:
证明:由三角形中的正弦定理得,所以,
同理,
于是左边=
。
七.证明不等式的方法:比较法、分析法、综合法和放缩法(比较法的步骤是:作差(商)后通过分解因式、配方、通分等手段变形判断符号或与1的大小,然后作出结论。).
常用的放缩技巧有:
如(1)已知,求证: ;
(2) 已知,求证:;
(3)已知,且,求证:;
(4)若a、b、c是不全相等的正数,求证:;
(5)已知,求证:;
(6)若,求证:;
(7)已知,求证:;
(8)求证:。
八.不等式的恒成立,能成立,恰成立等问题:不等式恒成立问题的常规处理方式?(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法)
1).恒成立问题
若不等式在区间上恒成立,则等价于在区间上
若不等式在区间上恒成立,则等价于在区间上
如(1)设实数满足,当时,的取值范围是______
(答:);
(2)不等式对一切实数恒成立,求实数的取值范围_____
(答:);
(3)若不等式对满足的所有都成立,则的取值范围_____
(答:(,));
(4)若不等式对于任意正整数恒成立,则实数的取值范围是_____
(答:);
(5)若不等式对的所有实数都成立,求的取值范围.
⑹若不等式恒成立,则实数a的取值范围是
此题直接求解无从着手,结合函数
易知,a只需满足条件:
0<a<1,且从而解得
2). 能成立问题
若在区间上存在实数使不等式成立,则等价于在区间上;
若在区间上存在实数使不等式成立,则等价于在区间上的.如
已知不等式在实数集上的解集不是空集,求实数的取值范围____
(答:)
3). 恰成立问题
若不等式在区间上恰成立, 则等价于不等式的解集为;
若不等式在区间上恰成立, 则等价于不等式的解集为.
例:若不等变恰有一解,求实数a的值
引导分析:此题若解不等式组,就特别麻烦了。结合二次函数的图形就会容易得多。
图解:
由图象易知:a=2或者a=-2
九.线性规划
.
展开阅读全文