收藏 分销(赏)

人教版初中数学全等三角形证明题(经典50题).doc

上传人:精**** 文档编号:10334951 上传时间:2025-05-23 格式:DOC 页数:15 大小:205.75KB
下载 相关 举报
人教版初中数学全等三角形证明题(经典50题).doc_第1页
第1页 / 共15页
人教版初中数学全等三角形证明题(经典50题).doc_第2页
第2页 / 共15页
点击查看更多>>
资源描述
人教版初中数学全等三角形证明题(经典50题)(含答案) 1. 已知:AB=4,AC=2,D是BC中点,AD是整数,求AD? A D B C 解析:延长AD到E,使DE=AD, 则三角形ADC全等于三角形EBD 即BE=AC=2 在三角形ABE中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD是整数,则AD=5 2. 已知:D是AB中点,∠ACB=90°,求证: D A B C 3. 已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2 A B C D E F 2 1 证明:连接BF和EF。 因为 BC=ED,CF=DF,∠BCF=∠EDF。 所以 三角形BCF全等于三角形EDF(边角边)。 所以 BF=EF,∠CBF=∠DEF。 连接BE。 在三角形BEF中,BF=EF。 所以 ∠EBF=∠BEF。 又因为 ∠ABC=∠AED。 所以 ∠ABE=∠AEB。 所以 AB=AE。 在三角形ABF和三角形AEF中, AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF。 所以 三角形ABF和三角形AEF全等。 所以 ∠BAF=∠EAF (∠1=∠2)。 B A C D F 2 1 E 4. 已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC 证明: 过E点,作EG//AC,交AD延长线于G 则∠DEG=∠DCA,∠DGE=∠2 又∵CD=DE ∴⊿ADC≌⊿GDE(AAS) ∴EG=AC ∵EF//AB ∴∠DFE=∠1 ∵∠1=∠2 ∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 5. 已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C A C D B 证明: 在AC上截取AE=AB,连接ED ∵AD平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB,AD=AD ∴⊿AED≌⊿ABD(SAS) ∴∠AED=∠B,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C 6. 已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE上取F,使EF=EB,连接CF 因为CE⊥AB 所以∠CEB=∠CEF=90° 因为EB=EF,CE=CE, 所以△CEB≌△CEF 所以∠B=∠CFE 因为∠B+∠D=180°,∠CFE+∠CFA=180° 所以∠D=∠CFA 因为AC平分∠BAD 所以∠DAC=∠FAC 又因为AC=AC 所以△ADC≌△AFC(SAS) 所以AD=AF 所以AE=AF+FE=AD+BE 12. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求证:BC=AB+DC。 证明:在BC上截取BF=BA,连接EF. ∠ABE=∠FBE,BE=BE,则⊿ABE≌ΔFBE(SAS),∠EFB=∠A; AB平行于CD,则:∠A+∠D=180°; 又∠EFB+∠EFC=180°,则∠EFC=∠D; 又∠FCE=∠DCE,CE=CE,故⊿FCE≌ΔDCE(AAS),FC=CD. 所以,BC=BF+FC=AB+CD. D C B A F E 13.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C 证明:AB//ED,AE//BD推出AE=BD, 又有AF=CD,EF=BC 所以三角形AEF 全等于三角形DCB, 所以:∠C=∠F 14. 已知:AB=CD,∠A=∠D,求证:∠B=∠C A B C D 证明:设线段AB,CD所在的直线交于E,(当AD<BC时,E点是射线BA,CD的交点,当AD>BC时,E点是射线AB,DC的交点)。 则: △AED是等腰三角形。 所以:AE=DE 而AB=CD 所以:BE=CE (等量加等量,或等量减等量) 所以:△BEC是等腰三角形 所以:角B=角C. 15. P是∠BAC平分线AD上一点,AC>AB,求证:PC-PB<AC-AB 证明:作B关于AD的对称点B‘,因为AD是角BAC的平分线,B'在线段AC上(在AC中间,因为AB较短) 因为PC<PB’+B‘C,PC-PB’<B‘C,而B'C=AC-AB'=AC-AB,所以PC-PB<AC-ABP D A C B 16. 已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:AC-AB=2BE 证明:∠BAC=180-(∠ABC+∠C=180-4∠C ∠1=∠BAC/2=90-2∠C ∠ABE=90-∠1=2∠C 延长BE交AC于F 因为,∠1 =∠2,BE⊥AE 所以,△ABF是等腰三角形 AB=AF,BF=2BE ∠FBC=∠ABC-∠ABE=3∠C-2∠C=∠C BF=CF AC-AB=AC-AF=CF=BF=2BE 17. 已知,E是AB中点,AF=BD,BD=5,AC=7,求F A E D C B DC 证明:作AG∥BD交DE延长线于G AGE全等BDE AG=BD=5 AGF∽CDF AF=AG=5 所以DC=CF=2 18.(5分)如图,在△ABC中,BD=DC,∠1=∠2,求证:AD⊥BC. 证明:延长AD至H交BC于H; BD=DC; 所以: ∠DBC=∠角DCB; ∠1=∠2; ∠DBC+∠1=∠角DCB+∠2; ∠ABC=∠ACB; 所以: AB=AC; 三角形ABD全等于三角形ACD; ∠BAD=∠CAD; AD是等腰三角形的顶角平分线 所以: AD垂直BC 19.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N. 求证:∠OAB=∠OBA 证明:因为AOM与MOB都为直角三角形、共用OM,且∠MOA=∠MOB 所以MA=MB 所以∠MAB=∠MBA 因为∠OAM=∠OBM=90度 所以∠OAB=90-∠MAB ∠OBA=90-∠MBA 所以∠OAB=∠OBA 20.如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB. 证明: 做BE的延长线,与AP相交于F点, ∵PA//BC ∴∠PAB+∠CBA=180°, 又∵,AE,BE均为∠PAB和∠CBA的角平分线 ∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形 在三角形ABF中,AE⊥BF,且AE为∠FAB的角平分线 ∴三角形FAB为等腰三角形,AB=AF,BE=EF 在三角形DEF与三角形BEC中, ∠EBC=∠DFE,且BE=EF,∠DEF=∠CEB, ∴三角形DEF与三角形BEC为全等三角形,∴DF=BC ∴AB=AF=AD+DF=AD+BC 21.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B 证明:在AB上找点E,使AE=AC ∵AE=AC,∠EAD=∠CAD,AD=AD ∴△ADE≌△ADC。DE=CD,∠AED=∠C ∵AB=AC+CD,∴DE=CD=AB-AC=AB-AE=BE ∠B=∠EDB ∠C=∠B+∠EDB=2∠B 22.如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M. (1)求证:MB=MD,ME=MF (2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由. 分析:通过证明两个直角三角形全等,即Rt△DEC≌Rt△BFA以及垂线的性质得出四边形BEDF是平行四边形.再根据平行四边形的性质得出结论. 解答:解:(1)连接BE,DF. ∵DE⊥AC于E,BF⊥AC于F,, ∴∠DEC=∠BFA=90°,DE∥BF, 在Rt△DEC和Rt△BFA中, ∵AF=CE,AB=CD, ∴Rt△DEC≌Rt△BFA, ∴DE=BF. ∴四边形BEDF是平行四边形. ∴MB=MD,ME=MF; (2)连接BE,DF. ∵DE⊥AC于E,BF⊥AC于F,, ∴∠DEC=∠BFA=90°,DE∥BF, 在Rt△DEC和Rt△BFA中, ∵AF=CE,AB=CD, ∴Rt△DEC≌Rt△BFA, ∴DE=BF. ∴四边形BEDF是平行四边形. ∴MB=MD,ME=MF. 23.已知:如图,DC∥AB,且DC=AE,E为AB的中点, (1)求证:△AED≌△EBC. (2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出结果,不要求证明): 证明:(1)DC∥AE,且DC=AE,所以四边形AECD是平行四边形。于是知AD=EC,且∠EAD=∠BEC。由AE=BE,所以△AED≌△EBC。 (2)△AEC、△ACD、△ECD都面积相等。 24.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F. 求证:BD=2CE. 证明:延长BA、CE,两线相交于点F ∵BE⊥CE ∴∠BEF=∠BEC=90° 在△BEF和△BEC中 ∠FBE=∠CBE, BE=BE, ∠BEF=∠BEC ∴△BEF≌△BEC(ASA) ∴EF=EC ∴CF=2CE ∵∠ABD+∠ADB=90°,∠ACF+∠CDE=90° 又∵∠ADB=∠CDE ∴∠ABD=∠ACF 在△ABD和△ACF中 ∠ABD=∠ACF, AB=AC, ∠BAD=∠CAF=90° ∴△ABD≌△ACF(ASA) ∴BD=CF ∴BD=2CE 25、如图:DF=CE,AD=BC,∠D=∠C。求证:△AED≌△BFC。 26、如图:AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。 求证:AM是△ABC的中线。 证明: ∵BE‖CF ∴∠E=∠CFM,∠EBM=∠FCM ∵BE=CF ∴△BEM≌△CFM ∴BM=CM ∴AM是△ABC的中线. 27、如图:在△ABC中,BA=BC,D是AC的中点。求证:BD⊥AC。 证明:三角形ABD和三角形BCD的三条边都相等,它们全等,所以角ADB和角CDB相等,它们的和是180度,所以都是90度,BD垂直AC 28、AB=AC,DB=DC,F是AD的延长线上的一点。求证:BF=CF 证明:在△ABD与△ACD中AB=AC BD=DC AD=AD ∴△ABD≌△ACD ∴∠ADB=∠ADC ∴∠BDF=∠FDC 在△BDF与△FDC中 BD=DC ∠BDF=∠FDC DF=DF ∴△FBD≌△FCD ∴BF=FC 29、如图:AB=CD,AE=DF,CE=FB。求证:AF=DE。 证明:因为AB=DC AE=DF, CE=FB CE+EF=EF+FB 所以三角形ABE=三角形CDF 因为 角DCB=角ABF AB=DC BF=CE 三角形ABF=三角形CDE 所以AF=DE 30.公园里有一条“Z”字形道路ABCD,如图所示,其中AB∥CD,在AB,CD,BC三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点,试说明三只石凳E,F,M恰好在一条直线上. 证明: ∵AB平行CD(已知) ∴∠B=∠C(两直线平行,内错角相等) ∵M在BC的中点(已知) ∴EM=FM(中点定义) 在△BME和△CMF中 BE=CF(已知) ∠B=∠C(已证) EM=FM(已证) ∴△BME全等与△CMF(SAS) ∴∠EMB=∠FMC(全等三角形的对应角相等) ∴∠EMF=∠EMB+∠BMF=∠FMC+∠BMF=∠BMC=180°(等式的性质) ∴E,M,F在同一直线上 31.已知:点A、F、E、C在同一条直线上, AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF. 证明: ∵AF=CE ∴AF+EF=CE+EF ∴AE=CF ∵BE//DF ∴∠BEA=∠DFC 又∵BE=DF ∴⊿ABE≌⊿CDF(SAS) D B Cc A F E 32.已知:如图所示,AB=AD,BC=DC,E、F分别是DC、BC的中点,求证: AE=AF。 证明:连结BD,得到等腰三角形ABD和等腰三角形BDC,由等腰△两底角相等得:角ABC=角ADC 在结合已知条件证得:△ADE≌△ABF 得AE=AF 33.如图,在四边形ABCD中,E是AC上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6. 证明:因为角1=角2∠3=∠4所以角ADC=角ABC. 又因为AC是公共边,所以AAS==>三角形ADC全等于三角形ABC. 所以BC等于DC,角3等于角4,EC=EC 三角形DEC全等于三角形BEC 所以∠5=∠6 34.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF. 证明:因为D,C在AF上且AD=CF 所以AC=DF 又因为AB平行DE,BC平行EF 所以角A+角EDF,角BCA=角F(两直线平行,内错角相等) 然后SSA(角角边)三角形全等 A C B D E F 35.已知:如图,AB=AC,BD^AC,CE^AB,垂足分别为D、E,BD、CE相交于点F,求证:BE=CD. 证明:因为 AB=AC, 所以 ∠EBC=∠DCB 因为 BD⊥AC,CE⊥AB 所以 ∠BEC=∠CDB BC=CB (公共边) 则有 三角形EBC全等于三角形DCB 所以 BE=CD 36、 如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F。 A E B D C F 求证:DE=DF. 解析:(AAS)证△ADE≌△ADF D C B A E 37.已知:如图, ACBC于C , DEAC于E , ADAB于A , BC =AE.若AB = 5 ,求AD 的长? 证明:角C=角E=90度 角B=角EAD=90度-角BAC BC=AE △ABC≌△DAE AD=AB=5 38.如图:AB=AC,ME⊥AB,MF⊥AC,垂足分别为E、F,ME=MF。求证:MB=MC 证明:∵AB=AC ∴△ABC是等腰三角形 ∴∠B=∠C 又∵ME=MF,△BEM和△CEM是直角三角形 ∴△BEM全等于△CEM ∴MB=MC 39.如图,给出五个等量关系:① ② ③ ④ ⑤.请你以其中两个为条件,另三个中的一个为结论,推出一个正确的结论(只需写出一种情况),并加以证明. A B C D E 已知: 求证: 证明: 已知1,2 求证4 因为AD=BC AC=BD,在四边形ADBC中,连AB 所以△ADB全等于△BCA 所以角D=角C 以4,5为条件,1为结论。 即:在四边形ABCD中,∠D=∠C,∠A=∠B,求 证明:AD=BC 因为 ∠A+∠B+∠C+∠D=360 ∠D=∠C,∠A=∠B, 所以 2(∠A+∠D)=360°, ∠A+∠D=180°, 所以 AB//DC 40.在△ABC中,,,直线经过点,且于,于.(1)当直线绕点旋转到图1的位置时,求证: ①≌;②; (2)当直线绕点旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由. (1) 证明:∵∠ACB=90°, ∴∠ACD+∠BCE=90°, 而AD⊥MN于D,BE⊥MN于E, ∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°, ∴∠ACD=∠CBE. 在Rt△ADC和Rt△CEB中,{∠ADC=∠CEB∠ACD=∠CBE AC=CB, ∴Rt△ADC≌Rt△CEB(AAS), ∴AD=CE,DC=BE, ∴DE=DC+CE=BE+AD; (2)不成立,证明:在△ADC和△CEB中,{∠ADC=∠CEB=90°∠ACD=∠CBE AC=CB, ∴△ADC≌△CEB(AAS), ∴AD=CE,DC=BE, ∴DE=CE-CD=AD-BE; 41.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。求证:(1)EC=BF;(2)EC⊥BF A E B M C F (1) 证明;因为AE垂直AB 所以角EAB=角EAC+角CAB=90度 因为AF垂直AC 所以角CAF=角CAB+角BAF=90度 所以角EAC=角BAF 因为AE=AB AF=AC 所以三角形EAC和三角形FAB全等 所以EC=BF 角ECA=角F (2)延长FB与EC的延长线交于点G 因为角ECA=角F(已证) 所以角G=角CAF 因为角CAF=90度 所以EC垂直BF 42.如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB。求证:(1)AM=AN;(2)AM⊥AN。 证明: (1) ∵BE⊥AC,CF⊥AB ∴∠ABM+∠BAC=90°,∠ACN+∠BAC=90° ∴∠ABM=∠ACN ∵BM=AC,CN=AB ∴△ABM≌△NAC ∴AM=AN (2) ∵△ABM≌△NAC ∴∠BAM=∠N ∵∠N+∠BAN=90° ∴∠BAM+∠BAN=90° 即∠MAN=90° ∴AM⊥AN 43.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.求证:BC∥EF 连接BF、CE, 证明:△ABF全等于△DEC(SAS), 然后通过四边形BCEF对边相等的证得平行四边形BCEF 从而求得BC平行于EF 44.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,则AB与AC+BD相等吗?请说明理由 证明:在AB上取点N ,使得AN=AC ∠CAE=∠EAN ,AE为公共边,所以三角形CAE全等三角形EAN 所以∠ANE=∠ACE 又AC平行BD 所以∠ACE+∠BDE=180 而∠ANE+∠ENB=180 所以∠ENB=∠BDE ∠NBE=∠EBN BE为公共边, 所以三角形EBN全等三角形EBD 所以BD=BN 所以AB=AN+BN=AC+BD 45、 如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF. 证明: ∵AD是中线 ∴BD=CD ∵DF=DE,∠BDE=∠CDF ∴△BDE≌△CDF ∴∠BED=∠CFD ∴BE‖CF A D E C B F 46、已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,. 求证:. 证明:∵DE⊥AC,BF⊥AC, ∴∠DEC=∠AFB=90°, 在Rt△DEC和Rt△BFA中,DE=BF,AB=CD, ∴Rt△DEC≌Rt△BFA, ∴∠C=∠A, ∴AB∥CD. 47、如图,已知∠1=∠2,∠3=∠4,求证:AB=CD A C E D B 48、如图,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE与DE的大小与位置关系,并证明你的结论. 结论:CE>DE。当∠AEB越小,则DE越小。 证明: 过D作AE平行线与AC交于F,连接FB 由已知条件知AFDE为平行四边形,ABEC为矩形 ,且△DFB为等腰三角形。 RT△BAE中,∠AEB为锐角,即∠AEB<90° ∵DF//AE ∴∠FDB=∠AEB<90° △DFB中 ∠DFB=∠DBF=(180°-∠FDB)/2>45° RT△AFB中,∠FBA=90°-∠DBF <45° ∠AFB=90°-∠FBA>45° ∴AB>AF ∵AB=CE AF=DE ∴CE>DE 49、 如图,已知AB=DC,AC=DB,BE=CE,求证:AE=DE. A B E C D 解析:先证明△ABC≌△BDC 的出角ABC=角DCB 在证明△ABE≌△DCE 得出AE=DE A B C D E F 图9 50.如图9所示,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:∠ADC=∠BDE. 证明:作CG平分∠ACB交AD于G ∵∠ACB=90° ∴∠ACG= ∠DCG=45° ∵∠ACB=90° AC=BC ∴∠B=∠BAC=45° ∴∠B=∠DCG=∠ACG ∵CF⊥AD ∴∠ACF+∠DCF=90° ∵∠ACF+∠CAF=90° ∴∠CAF=∠DCF ∵ AC=CB ∠ACG=∠B ∴△ACG≌△CBE ∴CG=BE ∵∠DCG=∠B CD=BD ∴△CDG ≌△BDE ∴∠ADC=∠BDE
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服