ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:205.75KB ,
资源ID:10334951      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10334951.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(人教版初中数学全等三角形证明题(经典50题).doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

人教版初中数学全等三角形证明题(经典50题).doc

1、 人教版初中数学全等三角形证明题(经典50题)(含答案) 1. 已知:AB=4,AC=2,D是BC中点,AD是整数,求AD? A D B C 解析:延长AD到E,使DE=AD, 则三角形ADC全等于三角形EBD 即BE=AC=2 在三角形ABE中,AB-BE

2、 2 1 证明:连接BF和EF。 因为 BC=ED,CF=DF,∠BCF=∠EDF。 所以 三角形BCF全等于三角形EDF(边角边)。 所以 BF=EF,∠CBF=∠DEF。 连接BE。 在三角形BEF中,BF=EF。 所以 ∠EBF=∠BEF。 又因为 ∠ABC=∠AED。 所以 ∠ABE=∠AEB。 所以 AB=AE。 在三角形ABF和三角形AEF中, AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF。 所以 三角形ABF和三角形AEF全等。 所以 ∠BAF=∠EAF (∠1=∠2)。 B A C D

3、F 2 1 E 4. 已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC 证明: 过E点,作EG//AC,交AD延长线于G 则∠DEG=∠DCA,∠DGE=∠2 又∵CD=DE ∴⊿ADC≌⊿GDE(AAS) ∴EG=AC ∵EF//AB ∴∠DFE=∠1 ∵∠1=∠2 ∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 5. 已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C A C D B 证明: 在AC上截取AE=AB,连接ED ∵AD平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB,AD=AD ∴⊿AED≌⊿ABD(SA

4、S) ∴∠AED=∠B,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C 6. 已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE上取F,使EF=EB,连接CF 因为CE⊥AB 所以∠CEB=∠CEF=90° 因为EB=EF,CE=CE, 所以△CEB≌△CEF 所以∠B=∠CFE 因为∠B+∠D=180°,∠CFE+∠CFA=180° 所以∠D=∠CFA 因为AC平分∠BAD 所以∠DAC=∠FAC 又因为AC=AC

5、所以△ADC≌△AFC(SAS) 所以AD=AF 所以AE=AF+FE=AD+BE 12. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求证:BC=AB+DC。 证明:在BC上截取BF=BA,连接EF. ∠ABE=∠FBE,BE=BE,则⊿ABE≌ΔFBE(SAS),∠EFB=∠A; AB平行于CD,则:∠A+∠D=180°; 又∠EFB+∠EFC=180°,则∠EFC=∠D; 又∠FCE=∠DCE,CE=CE,故⊿FCE≌ΔDCE(AAS),FC=CD. 所以,BC=BF+FC=AB+CD. D C

6、 B A F E 13.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C 证明:AB//ED,AE//BD推出AE=BD, 又有AF=CD,EF=BC 所以三角形AEF 全等于三角形DCB, 所以:∠C=∠F 14. 已知:AB=CD,∠A=∠D,求证:∠B=∠C A B C D 证明:设线段AB,CD所在的直线交于E,(当ADBC时,E点是射线AB,DC的交点)。 则: △AED是等腰三角形。 所以:AE=DE 而AB=CD 所以:BE=C

7、E (等量加等量,或等量减等量) 所以:△BEC是等腰三角形 所以:角B=角C. 15. P是∠BAC平分线AD上一点,AC>AB,求证:PC-PB

8、4∠C ∠1=∠BAC/2=90-2∠C ∠ABE=90-∠1=2∠C 延长BE交AC于F 因为,∠1 =∠2,BE⊥AE 所以,△ABF是等腰三角形 AB=AF,BF=2BE ∠FBC=∠ABC-∠ABE=3∠C-2∠C=∠C BF=CF AC-AB=AC-AF=CF=BF=2BE 17. 已知,E是AB中点,AF=BD,BD=5,AC=7,求F A E D C B DC 证明:作AG∥BD交DE延长线于G AGE全等BDE AG=BD=5 AGF∽CDF AF=AG=5 所以DC=CF=2

9、 18.(5分)如图,在△ABC中,BD=DC,∠1=∠2,求证:AD⊥BC. 证明:延长AD至H交BC于H; BD=DC; 所以: ∠DBC=∠角DCB; ∠1=∠2; ∠DBC+∠1=∠角DCB+∠2; ∠ABC=∠ACB; 所以: AB=AC; 三角形ABD全等于三角形ACD; ∠BAD=∠CAD; AD是等腰三角形的顶角平分线 所以: AD垂直BC 19.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N. 求证:∠OAB=∠OBA 证明:因为AOM与MOB都为直角三角形、共用OM,且∠MOA=∠M

10、OB 所以MA=MB 所以∠MAB=∠MBA 因为∠OAM=∠OBM=90度 所以∠OAB=90-∠MAB ∠OBA=90-∠MBA 所以∠OAB=∠OBA 20.如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB. 证明: 做BE的延长线,与AP相交于F点, ∵PA//BC ∴∠PAB+∠CBA=180°, 又∵,AE,BE均为∠PAB和∠CBA的角平分线 ∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形 在三角形ABF中,AE⊥BF,且AE为∠FAB的角平分线 ∴三角形FAB为等

11、腰三角形,AB=AF,BE=EF 在三角形DEF与三角形BEC中, ∠EBC=∠DFE,且BE=EF,∠DEF=∠CEB, ∴三角形DEF与三角形BEC为全等三角形,∴DF=BC ∴AB=AF=AD+DF=AD+BC 21.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B 证明:在AB上找点E,使AE=AC ∵AE=AC,∠EAD=∠CAD,AD=AD ∴△ADE≌△ADC。DE=CD,∠AED=∠C ∵AB=AC+CD,∴DE=CD=AB-AC=AB-AE=BE ∠B=∠EDB ∠C=∠B+∠EDB=2∠B 22.如图①,E、F

12、分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M. (1)求证:MB=MD,ME=MF (2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由. 分析:通过证明两个直角三角形全等,即Rt△DEC≌Rt△BFA以及垂线的性质得出四边形BEDF是平行四边形.再根据平行四边形的性质得出结论. 解答:解:(1)连接BE,DF. ∵DE⊥AC于E,BF⊥AC于F,, ∴∠DEC=∠BFA=90°,DE∥BF, 在Rt△DEC和Rt△BFA中, ∵AF=CE,AB=CD

13、 ∴Rt△DEC≌Rt△BFA, ∴DE=BF. ∴四边形BEDF是平行四边形. ∴MB=MD,ME=MF; (2)连接BE,DF. ∵DE⊥AC于E,BF⊥AC于F,, ∴∠DEC=∠BFA=90°,DE∥BF, 在Rt△DEC和Rt△BFA中, ∵AF=CE,AB=CD, ∴Rt△DEC≌Rt△BFA, ∴DE=BF. ∴四边形BEDF是平行四边形. ∴MB=MD,ME=MF. 23.已知:如图,DC∥AB,且DC=AE,E为AB的中点, (1)求证:△AED≌△EBC. (2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写

14、出结果,不要求证明): 证明:(1)DC∥AE,且DC=AE,所以四边形AECD是平行四边形。于是知AD=EC,且∠EAD=∠BEC。由AE=BE,所以△AED≌△EBC。 (2)△AEC、△ACD、△ECD都面积相等。 24.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F. 求证:BD=2CE. 证明:延长BA、CE,两线相交于点F ∵BE⊥CE ∴∠BEF=∠BEC=90° 在△BEF和△BEC中 ∠FBE=∠CBE, BE=B

15、E, ∠BEF=∠BEC ∴△BEF≌△BEC(ASA) ∴EF=EC ∴CF=2CE ∵∠ABD+∠ADB=90°,∠ACF+∠CDE=90° 又∵∠ADB=∠CDE ∴∠ABD=∠ACF 在△ABD和△ACF中 ∠ABD=∠ACF, AB=AC, ∠BAD=∠CAF=90° ∴△ABD≌△ACF(ASA) ∴BD=CF ∴BD=2CE 25、如图:DF=CE,AD=BC,∠D=∠C。求证:△AED≌△BFC。 26、如图:AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。 求证:AM是△ABC的中线。 证明: ∵BE‖CF ∴∠E=

16、∠CFM,∠EBM=∠FCM ∵BE=CF ∴△BEM≌△CFM ∴BM=CM ∴AM是△ABC的中线. 27、如图:在△ABC中,BA=BC,D是AC的中点。求证:BD⊥AC。 证明:三角形ABD和三角形BCD的三条边都相等,它们全等,所以角ADB和角CDB相等,它们的和是180度,所以都是90度,BD垂直AC 28、AB=AC,DB=DC,F是AD的延长线上的一点。求证:BF=CF 证明:在△ABD与△ACD中AB=AC BD=DC AD=AD ∴△ABD≌△ACD ∴∠ADB=∠ADC ∴∠BDF=∠FDC 在△BDF与△FDC中

17、BD=DC ∠BDF=∠FDC DF=DF ∴△FBD≌△FCD ∴BF=FC 29、如图:AB=CD,AE=DF,CE=FB。求证:AF=DE。 证明:因为AB=DC AE=DF, CE=FB CE+EF=EF+FB 所以三角形ABE=三角形CDF 因为 角DCB=角ABF AB=DC BF=CE 三角形ABF=三角形CDE 所以AF=DE 30.公园里有一条“Z”字形道路ABCD,如图所示,其中AB∥CD,在AB,CD,BC三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点,试说明三只石凳E,F,M恰好在一条直线上.

18、 证明: ∵AB平行CD(已知) ∴∠B=∠C(两直线平行,内错角相等) ∵M在BC的中点(已知) ∴EM=FM(中点定义) 在△BME和△CMF中 BE=CF(已知) ∠B=∠C(已证) EM=FM(已证) ∴△BME全等与△CMF(SAS) ∴∠EMB=∠FMC(全等三角形的对应角相等) ∴∠EMF=∠EMB+∠BMF=∠FMC+∠BMF=∠BMC=180°(等式的性质) ∴E,M,F在同一直线上 31.已知:点A、F、E、C在同一条直线上, AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF. 证明: ∵AF=CE ∴AF+EF=CE+EF

19、 ∴AE=CF ∵BE//DF ∴∠BEA=∠DFC 又∵BE=DF ∴⊿ABE≌⊿CDF(SAS) D B Cc A F E 32.已知:如图所示,AB=AD,BC=DC,E、F分别是DC、BC的中点,求证: AE=AF。 证明:连结BD,得到等腰三角形ABD和等腰三角形BDC,由等腰△两底角相等得:角ABC=角ADC 在结合已知条件证得:△ADE≌△ABF 得AE=AF 33.如图,在四边形ABCD中,E是AC上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6. 证明:

20、因为角1=角2∠3=∠4所以角ADC=角ABC. 又因为AC是公共边,所以AAS==>三角形ADC全等于三角形ABC. 所以BC等于DC,角3等于角4,EC=EC 三角形DEC全等于三角形BEC 所以∠5=∠6 34.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF. 证明:因为D,C在AF上且AD=CF 所以AC=DF 又因为AB平行DE,BC平行EF 所以角A+角EDF,角BCA=角F(两直线平行,内错角相等) 然后SSA(角角边)三角形全等 A C B D E F 35.已知:如图,AB=AC,BD^AC,CE^AB,垂

21、足分别为D、E,BD、CE相交于点F,求证:BE=CD. 证明:因为 AB=AC, 所以 ∠EBC=∠DCB 因为 BD⊥AC,CE⊥AB 所以 ∠BEC=∠CDB BC=CB (公共边) 则有 三角形EBC全等于三角形DCB 所以 BE=CD 36、 如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F。 A E B D C F 求证:DE=DF. 解析:(AAS)证△ADE≌△ADF D C B A E 37.已知:如图, ACBC

22、于C , DEAC于E , ADAB于A , BC =AE.若AB = 5 ,求AD 的长? 证明:角C=角E=90度 角B=角EAD=90度-角BAC BC=AE △ABC≌△DAE AD=AB=5 38.如图:AB=AC,ME⊥AB,MF⊥AC,垂足分别为E、F,ME=MF。求证:MB=MC 证明:∵AB=AC ∴△ABC是等腰三角形 ∴∠B=∠C 又∵ME=MF,△BEM和△CEM是直角三角形 ∴△BEM全等于△CEM ∴MB=MC 39.如图,给出五个等量关系:① ② ③ ④ ⑤.请你以其中两个为条件,另三个中的一个为

23、结论,推出一个正确的结论(只需写出一种情况),并加以证明. A B C D E 已知: 求证: 证明: 已知1,2 求证4 因为AD=BC AC=BD,在四边形ADBC中,连AB 所以△ADB全等于△BCA 所以角D=角C 以4,5为条件,1为结论。 即:在四边形ABCD中,∠D=∠C,∠A=∠B,求 证明:AD=BC 因为 ∠A+∠B+∠C+∠D=360 ∠D=∠C,∠A=∠B, 所以 2(∠A+∠D)=360°, ∠A+∠D=180°, 所以 AB//DC 40.在△ABC中,,,直线经过点,

24、且于,于.(1)当直线绕点旋转到图1的位置时,求证: ①≌;②; (2)当直线绕点旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由. (1) 证明:∵∠ACB=90°, ∴∠ACD+∠BCE=90°, 而AD⊥MN于D,BE⊥MN于E, ∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°, ∴∠ACD=∠CBE. 在Rt△ADC和Rt△CEB中,{∠ADC=∠CEB∠ACD=∠CBE AC=CB, ∴Rt△ADC≌Rt△CEB(AAS), ∴AD=CE,DC=BE, ∴DE=DC+CE=BE+AD; (2)不成立

25、证明:在△ADC和△CEB中,{∠ADC=∠CEB=90°∠ACD=∠CBE AC=CB, ∴△ADC≌△CEB(AAS), ∴AD=CE,DC=BE, ∴DE=CE-CD=AD-BE; 41.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。求证:(1)EC=BF;(2)EC⊥BF A E B M C F (1) 证明;因为AE垂直AB 所以角EAB=角EAC+角CAB=90度 因为AF垂直AC 所以角CAF=角CAB+角BAF=90度 所以角EAC=角BAF 因为AE=AB AF=AC 所以三角形EAC和三角形FAB全等 所以EC

26、BF 角ECA=角F (2)延长FB与EC的延长线交于点G 因为角ECA=角F(已证) 所以角G=角CAF 因为角CAF=90度 所以EC垂直BF 42.如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB。求证:(1)AM=AN;(2)AM⊥AN。 证明: (1) ∵BE⊥AC,CF⊥AB ∴∠ABM+∠BAC=90°,∠ACN+∠BAC=90° ∴∠ABM=∠ACN ∵BM=AC,CN=AB ∴△ABM≌△NAC ∴AM=AN (2) ∵△ABM≌△NAC ∴∠BAM=∠N ∵∠N+∠BAN=90° ∴∠BAM+∠BAN=90° 即∠MAN=90° ∴AM⊥

27、AN 43.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.求证:BC∥EF 连接BF、CE, 证明:△ABF全等于△DEC(SAS), 然后通过四边形BCEF对边相等的证得平行四边形BCEF 从而求得BC平行于EF 44.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,则AB与AC+BD相等吗?请说明理由 证明:在AB上取点N ,使得AN=AC ∠CAE=∠EAN ,AE为公共边,所以三角形CAE全等三角形EAN 所以∠ANE=∠ACE 又AC平行BD 所以∠ACE+∠BDE=180 而∠ANE+∠ENB=

28、180 所以∠ENB=∠BDE ∠NBE=∠EBN BE为公共边, 所以三角形EBN全等三角形EBD 所以BD=BN 所以AB=AN+BN=AC+BD 45、 如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF. 证明: ∵AD是中线 ∴BD=CD ∵DF=DE,∠BDE=∠CDF ∴△BDE≌△CDF ∴∠BED=∠CFD ∴BE‖CF A D E C B F 46、已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,. 求证:. 证明:∵DE⊥AC,BF⊥AC, ∴∠DEC=∠AFB=90°, 在Rt△DEC

29、和Rt△BFA中,DE=BF,AB=CD, ∴Rt△DEC≌Rt△BFA, ∴∠C=∠A, ∴AB∥CD. 47、如图,已知∠1=∠2,∠3=∠4,求证:AB=CD A C E D B 48、如图,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE与DE的大小与位置关系,并证明你的结论. 结论:CE>DE。当∠AEB越小,则DE越小。 证明: 过D作AE平行线与AC交于F,连接FB 由已知条件知AFDE为平行四边形,ABEC为矩形 ,且△DFB为等腰三角形。 RT△BAE中,∠AEB为锐角,即∠AEB<90° ∵

30、DF//AE ∴∠FDB=∠AEB<90° △DFB中 ∠DFB=∠DBF=(180°-∠FDB)/2>45° RT△AFB中,∠FBA=90°-∠DBF <45° ∠AFB=90°-∠FBA>45° ∴AB>AF ∵AB=CE AF=DE ∴CE>DE 49、 如图,已知AB=DC,AC=DB,BE=CE,求证:AE=DE. A B E C D 解析:先证明△ABC≌△BDC 的出角ABC=角DCB 在证明△ABE≌△DCE 得出AE=DE A B C D E F 图9 50.如图9所示,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:∠ADC=∠BDE. 证明:作CG平分∠ACB交AD于G ∵∠ACB=90° ∴∠ACG= ∠DCG=45° ∵∠ACB=90° AC=BC ∴∠B=∠BAC=45° ∴∠B=∠DCG=∠ACG ∵CF⊥AD ∴∠ACF+∠DCF=90° ∵∠ACF+∠CAF=90° ∴∠CAF=∠DCF ∵ AC=CB ∠ACG=∠B ∴△ACG≌△CBE ∴CG=BE ∵∠DCG=∠B CD=BD ∴△CDG ≌△BDE ∴∠ADC=∠BDE

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服