收藏 分销(赏)

初二数学几何图形题.doc

上传人:精*** 文档编号:10316477 上传时间:2025-05-22 格式:DOC 页数:4 大小:1.08MB
下载 相关 举报
初二数学几何图形题.doc_第1页
第1页 / 共4页
初二数学几何图形题.doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述
几何图形题 常见辅助线的作法有以下几种: 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”. 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”. 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理. 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠” 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 一、以等边三角形为基础 1.已知:如图1,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交MC于点E,BM交CN于点F. (1)求证:AN=BM; (2)求证:△CEF为等边三角形; (3)将△ACM绕点C按逆时针方向旋转90 O,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明). D E C P O B A 2.如图,△ABC为等边三角形,AB=6cm,O为AB上的任意一点(与B点不重合),OD⊥BC于D;DE⊥AC于E;EP⊥AB于P。问:当OB的长等于多少时,点P与点O重合? 二、以等腰直角三角形为基础 3.如图1图2图3,△AOB,△COD均是等腰直角三角形,∠AOB=∠COD=90º, (1)在图1中,AC与BD相等吗,有怎样的位置关系?请说明理由。 (2)若△COD绕点O顺时针旋转一定角度后,到达图2的位置,请问AC与BD还相等吗,还具有那种位置关系吗?为什么? (3)若△COD绕点O顺时针旋转一定角度后,到达图3的位置,请问AC与BD还相等吗?还具有上问中的位置关系吗?为什么? 4.如图,两个全等的含30°、60°角的三角板ADE和三角板ABC放置在一起,∠DEA=∠ACB=90°,∠DAE=∠ABC=30°,E、A、C三点在一条直线上,连接BD,取BD中点M,连接ME、MC,试判断△EMC的形状,并说明理由. 5.已知:在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的左侧作等腰直角△ADE,解答下列各题:如果AB=AC,∠BAC=90°. (i)当点D在线段BC上时(与点B不重合),如图甲,线段BD,CE之间的关系为______________ (ii)当点D在线段BC的延长线上时,如图乙,i)中的结论是否还成立?为什么? 6.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取 CG=AB,连结AD、AG。 求证:(1)AD=AG, (2)AD与AG的位置关系如何? 7.在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.写出点O 到△ABC的三个顶点A、B、C的距离的大小关系,并说明理由. (1)若点M、N分别是AB、AC上的点,且BM=AN,试判断△OMN形状,并证明你的结论. (2)S∆AMN、s∆OMN、又有怎样的数量关系?请写出你的猜想,不需证明. 8.如图,已知在△ABC中,∠BAC为直角,AB=AC,D为AC上一点,CE⊥BD于E. (1)若BD平分∠ABC,求证: (i)CE=BD;(ii) BC=AB+AD; (2)若D为AC上一动点,∠AED如何变化,若变化,求它的变化范围;若不变,求出它的度数,并说明理由。 4
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服