收藏 分销(赏)

大学物理光的波洞葱炉.pptx

上传人:精*** 文档编号:10305323 上传时间:2025-05-21 格式:PPTX 页数:77 大小:2.27MB
下载 相关 举报
大学物理光的波洞葱炉.pptx_第1页
第1页 / 共77页
大学物理光的波洞葱炉.pptx_第2页
第2页 / 共77页
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,#,第五讲 机 械 波,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,声波、水波、电磁波都是常见的波。,各种类型的波有其特殊性,但也有普遍的共性,,可以用相同的数学形式来描述,。,波动的分类:,机械波、,电磁波,、,物质波,。,与微观粒子对应的波,第五讲 机 械 波,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,一、,机械波,产生的条件(,源和路,),1.,波源,2.,连续介质,1,机械波的形成和传播,二、机械波的类型,1.,横波,:介质中质点振动的方向与波的传播方向,垂直,2.,纵波,:介质中质点振动的方向与波的传播方向,平行,1),横波只能在固体中。,2),纵波在所有物质中都可以传播。,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,波速,注意,1,、有些波既不是横波也不是纵波。如:水表面的波既非横波又非纵波。水波中的质元是做圆(或椭圆)运动的。,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,flash,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,波动,是振动状态(相位)的传播,是能量的传播,,质元并未“随波逐流”。,后面质点的振动规律与前面质点的振动规律相同,只是位相上有一个落后。,重要结论,:,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,三、,波长、波的周期和频率 波速,波动描述,1,、,波长,l,同一时刻,两个相邻的相位差,为,2,的振动质点间的距离,。,3,、,频率,n,单位时间内波向前传播的完整波,的数目,.(1s,内向前传播了几个波长),2,、,波的周期,T,波传过一个波长的时间。,周期或频率只决定于波源的振动,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,在波动过程中,某一,振动状态,在单位时间内传播的距离。,波速由介质的,弹性性质,和,惯性性质,决定。,4,、波速:,钢铁中,水 中,例如,声波在空气中,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,波面,波线,波面,波线,波线,波面,平面波,球面波,各向同性均匀介质中,波线恒与波面垂直。,沿波线方向各质点的振动相位依次落后。,四、波线和波面,波线,波面,波前,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,五、简谐波,简谐波是最基本的波动,波源和介质,的各质点均作简谐振动。数学上的傅里叶,分解法告诉我们,,任何非简谐振动都可以,分解为许多简谐振动的组合,。因此,研究,简谐波特别重要。,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,一、平面简谐波的波函数,1,、,右行波,的波动方程:,(,1,)已知,O,点振动表达式:,P,点在,t,时刻的振动状态,与,O,点在,(t-,x/u),时刻的振动状态相同。,2,平面简谐波的波动方程,(,O,点不一定是波源),或,P,点的相位比,O,点相位落后 。,参考点,O,(,滞后效应),Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,(,2,)如图,已知,P,点的振动方程:,或,思考,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,(,1,)已知,O,点振动表达式:,或,思考,2,、左行波,的波动方程:,(,超前效应),Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,(,2,)如图,已知,P,点的振动方程:,或,思考,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,注意:,(,波具有时间的周期性,),当,x,固定时,:,(波具有空间的周期性),当,t,一定时,:,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,1,、,t,一定时的波形图,(快照),t,时刻,t+,时刻,讨论各质点在给定时刻的振动方向,二、波函数的物理意义,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,例,1,:如图所示,为一简谐波在,t=0,时刻的波,形图。试写出,O,、,1,、,2,、,3,点的初位相,解:画出下一时刻的波形图,t+,t,x,y,t=0,u,O,1,2,3,图,1,y,t=0,u,O,1,2,3,x,图,2,t+,t,(,1,),(,2,),Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,t,讨论质点在某一时刻的振动方向,质点的振动速度,2,、,x,一定,,t,变化。,表示 点处质点的振动方程(的关系),Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,t,时刻,t+,时刻,波速即波形平移的速度!,3,、,t,、,x,都变化时:,对应跑动的波形(行波),Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,通常:,l,x,1,x,2,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,例,2,:一平面简谐波某时刻的波形图如下,则,OP,之间的距离为多少厘米。,0,p,2,20cm,解题思路:,Y,O,设波向右传播(,P,点落后于,O,点,),思考:若设波朝左传,则,Y,O,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,例,3,:一平面波在介质中以速度,u=20m/s,沿,x,轴正方向传播,已知在传播路径上某点,a,点的振动方程为,y,a,=3cos4,t,(,m,),(,1,)以,a,为坐标原点写出波动方程。,(,2,)以距,a,点,5m,处的,o,点为坐标原点,,写出 波动方程。,(3),求出,oc,两点之间的位相差,O,a,5m,x,c,8m,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,0,a,5m,x,c,8m,解,:,y,a,=3cos4,t,(,1,),a,为坐标原点:,(2)0,点为坐标原点:,0,点振,动方程,p(x),Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,(3),求出,oc,两点之间的位相差,0,a,5m,x,c,8m,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,例,4,:沿,X,轴正方向传播的平面简谐波、在,t=2s,时的波形如图,已知,A,、,u,及 ,问:,1,)原点,O,的初相及,P,点的初相各为多大?,2,)写出波动方程。,解题思路:,思考,:,求,O,、,P,两点之间的位相差。,0,p,t=2s,Y,O,t=2s,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,设有一行波:,质量为 的媒质元其动能为:,3,波的能量,质元的速度:,一、,媒质中振动动能,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,二、,媒质中振动势能,可以证明:,势能:,*,任意时刻,体元中动能与势能相等,同相地随时间变化。这不同于孤立振动系统。,总能:,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,3,波的能量(补充),胡克定律:,在弹性限度内,,应力,和,应变,成正比。,式中,E,为关于线变的比例系数,,它随材料的不同而不同,,叫,杨氏模量,。,补充:,l,l,+,l,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,振动动能,x,O,y,O,以固体棒中传播的纵波为例分析波的能量,.,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,x,O,y,O,弹性势能,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,能量极小,能量极大,弹性势能与媒质元的,相对形变量,的平方成正比,也就是与,波形图上的斜率,平方成正比。,体积元在平衡位置时,动能、势能和总机械能均最大,.,体积元的位移最大时,动能、势能和总机械能均最小,.,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,波的能量密度:,平均能量密度:,随时间变化,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,也适用于球面波,平均能流,三、,能流和能流密度,1,、能流,单位时间,内通过,某一截面,的能量,。,u,d,t,S,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,2,、能流密度(波的强度,I,)通过,垂直于波速方向,的,单位面积,的平均能流。,波强是矢量,其方向与波速方向相同。,波强是与振幅的,平方,成正比,其单位是,W/m,2,。,能流 电流,能量 电量,能流密度 电流 密度,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,例:如图,某一点波源发射功率为,40,瓦,求球面波上单位面积通过的平均能流。,r,解:,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,(,1,),在均匀不吸收能量,的媒质中传播的平面波在行进方向上,振幅不变,。,证明:因为 所以在单位时间内通过 和 面的能量应该相等,所以,平面波振幅相等。,平面波和球面波的振幅,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,设距波源单位距离的振幅为,A,,则距波源,r,处的振幅为,(,2,)球面波振幅与它离波源的距离成反比。,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,一、惠更斯原理:,波阵面,(,波前,),上的每一点,都是发射子波的新波源,其后任意时刻,这些子波的包络面就是新的波阵面。,S,2,S,1,用惠更斯原理解释波的传播行为,4,惠更斯原理 波的叠加和干涉,视频,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,波的衍射,水波通过狭缝后的衍射,波在传播过程中遇到障碍物时,能绕过障碍物的边缘,在障碍物的阴影区内继续传播,.,惠更斯原理解释波的衍射:,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,如你家在大山后,听广播和看电视哪个更容易,?(,若广播台、电视台都在山前侧,),Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,1,、若有几列波同时在介质中传播,则它们各自将以原有的,振幅、频率和波长,独立,传播;并不因为其它波的存在而改变。,(独立性),2,、在几列波相遇处,质元的位移等于各列波单独传播时在该处引起的位移的,矢量和,(叠加性),二、,波的,叠加原理:,细雨绵绵 独立传播,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,能分辨不同的声音正是这个原因;,叠加原理的重要性在于可以将任一复杂的波分解为简谐波的组合。,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,三、,波的干涉,相干条件,:,相同的频率,恒定的初相位差,振动方向相同,干涉现象,两列波相遇区域内,,某些点的振动始终加强,另一些点的振动始终减弱,的现象,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,传播到,P,点引起的振动:,波源,S,1,:,波源,S,2,:,S,1,S,2,P,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,1,),合振动的振幅(波的强度)在空间各点的分布随位置而变,但是稳定的,.,其他,振动始终,加强,振动始终,减弱,2,),Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,称 为波程差,干涉加强,干涉减弱,如图示,,S,1,S,2,r,1,r,2,S,S,2,S,1,当两相干波源为同相波源,即 时,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,解:,例,1,:如图,S,1,、,S,2,为两平面简谐波相干波源,,S,2,的位相比,S,1,的位相超前 ,,S,1,在,P,点引起的振幅为,0.3m,,,S,2,在,P,点引起的振幅为,0.2m,,求,P,点的合振幅。,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,例,2,、如图所示,波源,S,发出的一列简谐波沿,X,轴方向传播,在其传播路径上有一障碍物,其上有两个关于,S,对称的小孔,S,1,和,S,2,,间距,a,=S,1,S,2,=4,,,是波源发出的波的波长。求:图示轴上干涉加强与减弱的位置。,S,S,2,S,1,x,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,解:,S,1,、,S,2,为两个相干波,源,且初位相相同。,设:两波相遇时,S,1,P=,x,则,加强:,加强点的分布:,S,S,2,S,1,x,P,x,r,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,减弱:,减弱点的分布:,S,S,2,S,1,x,P,x,r,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,一、,产生驻波的,演示实验,5,驻 波,B,mg,现象:,AB,弦线被分成几段长度相等的作稳定振动的部分,有些点始终静止,另一些点振动最强。,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,驻波是入射波与反射波,干涉,的结果。,说明,:,二、,驻 波方 程,设:,求出,驻波的表达式,:,合振动的振幅项,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,(,1,)各点都在作简谐振动,振幅:,(,2,)波节位置:,讨论:,相邻波节(腹)间距:,波腹位置:,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,3,),相邻两波节之间质点振动同相位,任一波节两侧振动相位相反,在,波节,处产生,的,相位跃变,.,(与行波不同,无相位的传播),.,为,波节,例,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,例,1,:如图,若,o,、处分别有两个相干波源,,其振动方程分别为:,y,o,x,求波腹和波节的位置。,解题思路:,在,范围内形成驻波。,驻波,右行波,左行波,对其中的任一点,x,x,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,当波由波密煤质入射到波疏煤质,,在反射点,,入射波和反射波的位相相同(即,无半波损失,),波疏煤质,三、相位跃变(半波损失),波密煤质,界面,入射波在界面上反射时,引起相位相反(相位有,p,跃变),有半波损失动画,无半波损失动画,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,例,2,、如图所示,已知:,O,点的振动方程为,求:,反射波的波动方程。(反射时存在半波损失),O,l,1,x,B,解:,(,1,)取,O,点为坐标原点,则入射波的波动方程为:,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,反射波的波动 方程为:,O,l,1,x,B,x,入射波在,B,点的振动方程,反射波在,B,点的振动方程,反射波在,O,点的振动方程,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,(2),能形成驻波的两列相干波,传播方向相反,,已知,入射波的波动方程为,则反射波的波动方程必可设为,在,B,点,,x,l,1,处是波节,+,O,l,1,x,B,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,o,L,疏,密,例,3,:如图,已知原点,O,处质点的振动方程为:,求反射波方程。,解题思路:,x,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,例,4,:在弹性媒质中有一沿,X,轴正向传播的平面波,其波动方程为:,若在,X,5.00m,处有一媒质分解面,且在分解面处位相突变 ,设反射波的强度不变,试写出反射波的波动方程。,解题思路:,由题意知,在,X,5.00m,处是一波节,,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,6,多普勒效应,当鸣笛的火车开向站台,站台上的观察者听到的笛声变尖,即频率升高;相反,当火车离开站台,听到的笛声频率降低。,现象,多普勒效应:,观察者接受到的频率有赖于,波源,或,观察者运动,的现象。,视频,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,发射频率,接收频率,接收频率,单位时间内观测者接收到的振动次数或完整波数,.,人耳听到的声音的频率与声源的频率相同吗?,讨论,只有波源与观察者相对静止时才相等,.,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,一、机械波的多普勒现象,1,、声源不动,设观察者(,observer,),相对于媒质的运动速度为,(,2,)人远离声源运动,(,1,)人向声源运动,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,二、观察者不动,波源相对介质以 运动,动画,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,设声源(,sourcer),相对于媒质的运动速度为,则:,(,1,)声源向观察者移动,则:,(,2,)声源背离观察者移动,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,观察者,向,波源运动,+,远离,-,波源,向,观察者运动,-,远离,+,三 波源与观察者同时相对介质运动,动画,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,不论是波源运动,还是观察者运动,或是两者同时运动,定性地说:,结论:,两者,靠近,,接受到的频率,高于,原来波源的频率;,两者,远离,,接受到的频率,低于,原来波源的频率;,应作为运动速度沿波源和观察者连线方向的分量。,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,当 时,所有波前将聚集在一个圆锥面上,波的能量高度集中形成,冲击波,或,激波,,如核爆炸、超音速飞行等,.,1,、报警和监测车速。医学上,测量血流速度、做超声心动等。,三、应用,2,、跟踪人造地球卫星等。,3,、,天文学家利用电磁波红移说明大爆炸理论;,4,、,用于贵重物品、机密室的防盗系统;,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,冲击波(激波,),当波源向接收器运动时,接收器接收的频率比波源的频率大,但当波源的速度等于波的速度,波源总在波阵面上。,能量聚集区,声障,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,如果波源的速度大于波的速度,波源总在波阵面前面。,冲击波,ut,马赫角,马赫数,=,飞机冲破声障时将发出巨大声响,造成噪声污染,视频,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,警察用多普勒测速仪测速,超声多普勒效应测血流速,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,例,1,:一静止波源向一飞行物发射,n=30KH,Z,的超声波,飞行物离波源而去,在波源处测得发射波与反射波拍频为,Dn=100,Hz,。已知声速为,u,=340m/s,计算飞行物离去速度的大小。,解:,飞行物得到的频率为:,波源处测得飞行物的反射波的频率为:,拍频:,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,例,2,:如图,,A,、,B,为两个汽笛,其频率均为,500Hz,,,A,为静止的,,B,以,60m/s,的速率向右运动。在两个汽笛之间有一观察者,R,,以,30m/s,的速度也向右运动,已知空气中的声速为,330m/s,,求:(,1,)观察者听到来自,A,的频率。,(,2,)观察者听到来自,B,的频率。,(,3,)观察者听到的拍频。,A,B,解:,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,二、光的多普勒效应,*,光的传播是“自己到达”,不需媒质传播,光速不变,,C=,nl,光源与观察者的运动是相对的,若相对速度为,V,,则可用相对论证明光波的频率变为:,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,红移:,当光源远离接收器时,接收到的频率变小,因而波长变长。,如来自星球与地面同一元素的光谱比较,发现几乎都发生红移。这就是,“大爆炸”,宇宙学理论的重要依据。,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服