资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,九年级数学,下 新课标,冀教,第,三十,章 二次函数,学习新知,检测反馈,30.4,二次函数应用,(,第,2,课时,),第1页,学 习 新 知,从地面竖直向上抛出一小球,小球高度,h,(,单位,:m),与小球运动时间,t,(,单位,:s),之间关系式为,h,=30,t,-5,t,2,(0,t,6),.,小球运动时间是多少时,小球最高,?,小球运动中最大高度是多少,?,第2页,(,教材第,44,页例,2),用总长度为,24 m,不锈钢材料制成如图所表示外观为矩形框架,其横档和竖档分别与,AD,AB,平行,.,设,AB,=,x,m,当,x,为多少时,矩形框架,ABCD,面积,S,最大,?,最大面积是多少平方米,?,思索,:,1,.,当矩形宽,AB,=,x,m,时,怎样用包含,x,代数式表示矩形长,BC,?,2,.,矩形面积,S,与矩形宽,x,之间等量关系是什么,?,3,.,你能写出矩形面积,S,与矩形宽,x,之间函数表示式吗,?,4,.,请用配方法将所得到二次函数普通式转化成顶点式,.,5,.,该二次函数有没有最大值,?,最大值是多少,?,此时,x,值是多少,?,解,:,且,a,=0,则当,x,=-,时,y,最小值,=;,若,a,0,则当,x,=-,时,y,最大值,=,.,(2),公式法,:,直接利用上述关系式经过配方得出结论,.,3,.,数形结合思想在本节课经过二次函数求实际问题中最值问题中得到了广泛应用,.,2,.,本节知识用到了转化思想及数学建模思想,如将实际问题中数量关系转化为数学问题中函数关系,.,第8页,检测反馈,1,.,如图所表示,假设篱笆,(,虚线部分,),长度为,16 m,则所围成矩形,ABCD,最大面积是,(,),A.60 m,2,B.63 m,2,C.64 m,2,D.66 m,2,解析,:,设,BC,=,x,m,矩形,ABCD,面积为,y,m,2,依据题意得,y,=(16-,x,),x,=-,x,2,+16,x,=-(,x,-8),2,+64,当,x,=8,时,y,max,=64,则所围成矩形,ABCD,最大面积是,64 m,2,.,故选,C,.,C,第9页,2,.,如图所表示,ABC,是直角三角形,A,=90,AB,=8 cm,AC,=6 cm,点,P,从点,A,出发,沿,AB,方向以,2 cm/s,速度向点,B,运动,;,同时点,Q,从点,A,出发,沿,AC,方向以,1 cm/s,速度向点,C,运动,其中一个动点抵达终点,则另一个动点也停顿运动,则,APQ,最大面积是,(,),A.8 cm,2,B.16 cm,2,C,.,24 cm,2,D.32 cm,2,解析,:,依据题意得,P,沿,AB,方向以,2 cm/s,速度向点,B,运动,;,同时点,Q,从点,A,出发,沿,AC,方向以,1 cm/s,速度向点,C,运动,设运动时间为,t,s,AP,=2,t,AQ,=,t,S,APQ,=,t,2,0,t,4,三角形,APQ,最大面积是,16 cm,2,.,故选,B,.,B,第10页,3,.,出售某种手工艺品,若每个赢利,x,元,一天可售出,(8-,x,),个,则当,x,=,一天出售该种手工艺品总利润,y,最大,.,解析,:,由题意得,y,=(8-,x,),x,即,y,=-,x,2,+8,x,当,=4,时,y,取得最大值,.,故填,4,.,4,4,.,在距离地面,2 m,高某处把一物体以初速度,v,0,(m/s),竖直向上抛出,在不计空气阻力情况下,其上升高度,s,(m),与抛出时间,t,(s),满足,:,s,=,v,0,t,-,gt,2,(,其中,g,是常数,通常取,10 m/s,2,),.,若,v,0,=10,则该物体在运动过程中最高点距地面,m.,解析,:,把,g,=10,v,0,=10,代入,s,=,v,0,t,-,gt,2,得,s,=-5,t,2,+10,t,=-5(,t,-1),2,+5,它是开口向下一条抛物线,所以最大值为,5,此时离地面高度为,5+2=7(m),.,故填,7,.,7,第11页,5,.,某商店将每件进价,8,元某种商品按每件,10,元出售,一天可售出,100,件,该店想经过降低售价增加销售量方法来提升利润,经过市场调查,发觉这种商品单价每降低,0,.,1,元,其销售量可增加,10,件,.,将这种商品售价降低多少时,能使销售利润最大,?,解,:,设每件商品降价,x,元,(0,x,2),该商品天天利润为,y,元,.,商品天天利润,y,与,x,函数关系式是,:,y,=(10-,x,-8)(100+100,x,),即,y,=-100,x,2,+100,x,+200,配方得,y,=-100 +225,.,因为,x,=,时,满足,0,x,2,所以当,x,=,时,函数取得最大值,最大值为,225,.,所以将这种商品售价降低,元时,能使销售利润最大,.,第12页,
展开阅读全文