资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,第二讲 远期利率与,FRA,In gambling,you create the risk.,In speculating,you assume the risk.,1,一,.,远期利率,(forward),1.,远期,(forward),远期是指交易双方对将来进行交割(,deliver,),的某种产品或工具,现在就确定价格和其它成交条,件的交易。,远期价格类型:,远期利率,-,资金融通的远期价格,远期汇率,-,远期外汇买卖的价格,2,2.,远期利率及其确定,在商务经营活动中,经常会面临这样的融资需求,:,在未来某一时期内需要融入资金使用。为防范未来,利率波动产生的风险,借款方就需要锁定借款成,本,这是保值需求。锁定借款成本就是要确定远期,利率。,确定远期利率的技术:,Application of the risk-free arbitrage,or maturity transformation technique,。,3,1)Synthetic forward borrowing-borrowing long,lending short.(,综合远期结构,-,借长贷短,),Example:,Lets say that a bank is asked to quote a fixed,rate for a six month loan of$1m,to start six,months from now.,This is a typical“forward-forward loan”,because both the draw-down and repayment dates,are in the future.,4,已知市场相关信息如下:,六月期贷款利率:,9.500%,十二月期贷款利率,:9.875%,这是即期利率,即从现在开始,而不是从,将来某一时点开始执行。,5,远期对远期贷款图示,即期 六个月 一年,借入长期,(9.875%),+954654 -1048926,贷出短期,9.500%,-954654 +1000000,-1000000 +1048926,?(9.785%),6,如果以下述符号分别代表例中各有关变量,的,年利率,:,r,s,较短期限的利率(六月),r,L,较长期限的利率(十二月),r,f,远期利率(年),P,借贷款的本金数额,则有下述关系式成立:,(1,r,L,)=(1,r,s,/2)(1,r,f,/2),7,2)Synthetic forward borrowing-borrowing,short,lending long.(,综合远期结构,-,借短贷长,),举例,“吸储贷放”是银行的一个基本功能。为将各种期,限的储蓄存款整合成适宜贷款的要求,银行会面临,远期利率的确定问题。如,某银行按,10%,的年利率,借入,100,万美元的资金,借期为,30,天;同时要按,15%,的年利率进行贷款,贷款期限为,60,天。银行需,要确定第二个,30,天的借款利率是多少,才能确保这,笔交易没有风险。,8,A,支付的借款利息:,100000030/36010%=8333.33,B,收入的贷款利息:,100000060/36015%=25000,C,为了对第二个,30,天的借款进行融资,并偿还第一个,30,天的借款利息,银行还必须借入资金(期限,30,天):,1000000,8333.33=1008333.33,D,银行的利差收入为:,25000,8333.33=16666.67,这笔利差收入应该等于第二笔借款的利息支出,银行才,能避免亏损,即,16666.67=1008333.33 30/360,?,第二笔借款的利率即远期利率为:,?,=19.83%,9,如果我们以下述符号表示各有关变量:,N,L,期限较长的天数,N,s,期限较短的天数,B,天数计算惯例(,360,天),可以推导出借入短期、贷出长期的远期利,率计算公式如下:,r,L,N,L,r,s,N,s,rf =,(N,L,N,s,)1,(r,s,N,s,)/B,10,二,.FRA(forward rate agreement),定义及基本内容,定义,;,功能,;,交易,;,品种。,时间流程图,3,。常用术语,买方和卖方,合约利率和参考利率,结算金及其计算,11,FRA,时间流程图,2,天,2,天,延后期 合约期,交易日 起算日 确定日 结算日,(settlement),到期日,(dealing)(spot)(fixing)(,起息日,)(maturity),(value),确定,FRA,确定参考 支付,合约利率 利率 结算金,12,结算金计算,举例,假定某公司三个月后要借入一笔,100,万元,的资金,借期六个月,以,LIBOR,计息。现行,LIBOR,为,6%,,但公司担心未来利率上升,希,望借助于,FRA,进行保值。,应用,“,3,9,”,FRA,,就可以有效地将三个,月后的六月期借款锁定在,FRA,合约利率水平,上,不管到时市场实际利率如何变化。,13,FRA,结算金计算公式:,若到期日支付结算金(,360,天作为一,年),公式如下:,结算金,=,(参考利率合约利率),合约金额,合约期,/360,在,FRA,市场上,习惯做法是在结算日支付结算,金,以减少信用风险。由于对结算金进行了提前处,理,所以需要对,FRA,结算金加以贴现(从到期日贴,现至结算日)。,14,(,ir,ic,),AD/360,S=,1,(,irD/360,),其中:,S,结算金,I,r,参考利率,I,c,合约利率,A,合约金额,D,合约期,B,天数计算惯例(,360,天),几个注意点。,15,5.FRA,应用,:,案例分析,某公司将在三月后有一笔,1000,万元的资,金到位,届时打算将这笔资金进行为期三个,月的投资。公司预计市场利率可能下跌,为,避免投资利率风险,可以通过,FRA,交易来防,范收益率下降的风险。,16,交易的具体内容和相关市场信息如下:,买方:银行 交易日:,3,月,3,日,卖方:公司 结算日:,6,月,5,日,交易品种:,36,到期日:,9,月,5,日,合约利率:,5.00%,合约期:,92,天,参考利率:,4.50%,合约金额,:1000,万,17,首先,计算,FRA,的结算金,结果为,-12632.50 0,到,6,月,5,日,公司将收到的,1000,万资金和,FRA,结算金进行三月期投资,假设投资利率,为,4.375%,,略低于银行同业拆放利率即,LIBOR,(,4.50%,)。投资到期时的本利之和,为:,10124579.29,。,18,通过,FRA,交易和此后的投资,公司的实际,收益率达到了,4.8748%,。既达到了防范风险,的目的,又获得了高于当时市场投资利率,(,4.375%,)的实际收益率(,4.8748%,)。,如果市场利率的走势与公司的预期相反,,即利率上涨,譬如,BBA,公布的参考利率为,5.5%,,结果又怎样?,19,6.FRA,的定价原理,FRA,的定价实际上就是研究如何确定,FRA,的合约,利率。思路,:,把,FRA,看作是一种在现期市场上填补,不同到期期限时间差的金融工具,。,举例:,假定某投资者有一笔资金要投资一年。市场上六,月期利率和十二月期利率分别为,9%,和,10%,。投资者,至少有以下两种选择:,投资一年,获利,10%,;,投资半年,获利,9%,,同时出售一份“,612”FRA,将下半年的收益锁定在某种水平上。,20,这两种投资方案用简图表示如下:,0,月,9%6,月,FRA(?)12,月,A B,10%,这是“快速粗糙”(,quick and dirty technique),的定价技术。,21,实务工作中所采用的、已将利滚利因素考,虑在内的,FRA,定价公式:,(1,i,s,t,s,)(1,i,f,t,f,)=(1,i,L,t,L,),如果以天数来取代时间分数(年),则上,式可以改写为如下形式;,i,L,D,L,i,s,D,s,i,f,=,D,f,1,(i,s,D,s,/360),22,i,s,i,f,(,FRA,价格),A i,L,B,spot settlement maturity,0 t,s,t,f,t,L,D,s,D,f,D,L,23,若以下述符号代表各变量:,i,sb,结算日的拆入利率,(bid rate),i,sL,结算日的拆放利率,(offer rate),i,Lb,到期日的拆入利率,(bid rate),i,LL,到期日的拆放利率,(offer rate),FRA bid price,:,i,Lb,D,L,i,sL,D,s,FRA,b,=,D,f,1,(i,sL,D,s,/360),24,FRA offer price:,i,LL,D,L,i,sb,D,s,FRAs=,D,f,1,(i,sb,D,s,/360),已知货币市场利率如下:,3m,(,92,天):,bid:5.50%,(,i,sb,),offer:5.63%,(,i,sL,),9m,(,275,天),:bid:5.70%,(,i,Lb,),offer:5.83%,(,i,LL,),要求银行报出“,39”FRA,的买入卖出价?,25,7.FRA,的价格调整,Example,:“,69”FRA,Assume,:,6m market rate,:,8%,9m market rate,:,9%,The“69”FRA would be priced at,about 11%according to“quick and dirty,technique”.,26,If six-month rates rise by 1%,,,the,FRA rate should fall by about 2%,。,If the rate for the total period(nine-,month rate)increases by 1%,,,the FRA,rate should rise by about 3%,。,采用数学分析方法也可以得出完全相同的,结果,。,27,若干,FRA,品种的价格变化特点如下:,FRA i,s,(+1bp)i,L,(+1bp)i,s,or i,L,(+1bp),36 -1 +2 +1,69 -2 +3 +1,612 -1 +2 +1,912 -3 +4 +1,28,Exhibit 4.7,Forward Price Example,You intend to buy a security 180 days forward.The Current spot price is$90 and the six month interest rate is 6.7%pa.Calculate the forward price under the following three asset income scenarios:,No income,Income paid at rate of 8%pa on a constant basis,A lump sum of$4.5 will be paid in 91 days,-assume the three month interest rate in three months is also 6.7%pa.,29,1.No income,S=$90 r=0.067 f=180 D=360,F=S,(1+rf/D),=90(1+0.067180/360),=93.015,2.Income=8%pa constant,S=$90 r=0.067 f=180 D=360 q=0.08,F=S,1+(r-q)f/D,=901+(0.067-0.08)180/360,=89.415,30,3.Income=lump payment of$4.50,S=$90 r1=0.067 r2=0.067 f1=180,f2=89 D=360 c=4.5,F=S,(1+r1f1/D)-c(1+r2f2/D),=90(1+0.067180/360)-,4.5(1+0.06789/360),=88.44046,31,Exhibit 4.8,Forward Price and Valuation,You have enter into the forward contract discussed in Exhibit 4.7 where the asset pays no income,at a price of$93.015,.You decide to calculate the value of this contract,after 30 days,have passed.In that time,interest rates have risen to 8%pa,and the,cash price of the security has declined to$84.2.,Calculate the,current forward price,the,forward value,and then the,present value,of this contract.,32,Current forward price(30 days after),S=$84.2 r=0.08 f=150 D=360,F=S,(1+rf/D),=84.2(1+0.08150/360),=87.0067,33,2.,Value at forward expiry date,Forward value=Current forward price,forward contract price,87.0067-93.015,=-6.0083,34,3.Present value of forward contract,Present value=forward value/(1+r,f/D),=-6.0083/(,1+0.08,150/360),=-5.81448,35,
展开阅读全文